The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order in the -norm if the method uses polynomials of order . Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order . Further we consider a residual-based a posteriori...
The paper presents a discontinuous Galerkin method for solving partial integro-differential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure...
We consider the analysis and
numerical solution of a forward-backward boundary value problem.
We provide some motivation, prove existence and uniqueness in a function
class especially geared to the problem at hand, provide various energy
estimates, prove a priori error estimates for the Galerkin method,
and show the results of some numerical computations.
Currently displaying 21 –
25 of
25