Page 1

Displaying 1 – 14 of 14

Showing per page

Finite Volume Box Schemes and Mixed Methods

Jean-Pierre Croisille (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume schemes for equations in divergence form div ϕ ( u , u ) = f . The first scheme, which has been introduced in [CITE], is a generalization in two dimensions of Keller's box-scheme. The second scheme is the dual of the first one, and is a cell-centered scheme for u and the flux φ. For the first scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the primal unknown u...

Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate

Claire Chainais-Hillairet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study some finite volume schemes for the nonlinear hyperbolic equation u t ( x , t ) + div F ( x , t , u ( x , t ) ) = 0 with the initial condition u 0 L ( N ) . Passing to the limit in these schemes, we prove the existence of an entropy solution u L i n f t y ( N × + ) . Proving also uniqueness, we obtain the convergence of the finite volume approximation to the entropy solution in L l o c p ( N × + ) , 1 ≤ p ≤ +∞. Furthermore, if u 0 L BV l o c ( N ) , we show that u BV l o c ( N × + ) , which leads to an “ h 1 4 ” error estimate between the approximate and the entropy solutions (where h defines the size of the...

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Fully discrete error estimation by the method of lines for a nonlinear parabolic problem

Tomáš Vejchodský (2003)

Applications of Mathematics

A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.

Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise

Georgios T. Kossioris, Georgios E. Zouraris (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method...

Currently displaying 1 – 14 of 14

Page 1