Displaying 841 – 860 of 1407

Showing per page

Multicomponent flow in a porous medium. Adsorption and Soret effect phenomena: local study and upscaling process

Serge Blancher, René Creff, Gérard Gagneux, Bruno Lacabanne, François Montel, David Trujillo (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...

Multilevel correction adaptive finite element method for semilinear elliptic equation

Qun Lin, Hehu Xie, Fei Xu (2015)

Applications of Mathematics

A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary...

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

Aihui Zhou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a multi-parameter error resolution technique is applied into a mixed finite element method for the Stokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained by multi-processor computers in parallel.

Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations of Elliptic Problems

Paola F. Antonietti, Blanca Ayuso (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce and analyze some non-overlapping multiplicative Schwarz methods for discontinuous Galerkin (DG) approximations of elliptic problems. The construction of the Schwarz preconditioners is presented in a unified framework for a wide class of DG methods. For symmetric DG approximations we provide optimal convergence bounds for the corresponding error propagation operator, and we show that the resulting methods can be accelerated by using suitable Krylov space solvers. A discussion...

Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing

Petr Vaněk, Marian Brezina (2013)

Applications of Mathematics

We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level k , at least C h k + 1 / h k , we prove a convergence result independent of h k + 1 / h k . The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis...

New a posteriori L ( L 2 ) and L 2 ( L 2 ) -error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems

Zuliang Lu (2016)

Applications of Mathematics

We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L ( J ; L 2 ( Ω ) ) -norm and L 2 ( J ; L 2 ( Ω ) ) -norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important...

New mixed finite volume methods for second order eliptic problems

Kwang Y. Kim (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems which are based on H(div)-conforming approximations for the vector variable and discontinuous approximations for the scalar variable. The discretization is fulfilled by combining the ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We propose two different types of methods, called Methods I and II, and show that they have distinct advantages over...

New regularity results and improved error estimates for optimal control problems with state constraints

Eduardo Casas, Mariano Mateos, Boris Vexler (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence...

Currently displaying 841 – 860 of 1407