The search session has expired. Please query the service again.
Displaying 381 –
400 of
1123
We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For -Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.
The geometry of second-order systems of ordinary differential equations represented by -connections on the trivial bundle is studied. The formalism used, being completely utilizable within the framework of more general situations (partial equations), turns out to be of interest in confrontation with a traditional approach (semisprays), moreover, it amounts to certain new ideas and results. The paper is aimed at discussion on the interrelations between all types of connections having to do with...
We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two....
In this paper, a finite dimensional approximated model of a mechanical system constituted by a vertical heavy flexible beam with lumped masses placed along the beam and a mobile mass located at the tip, is proposed; such a model is parametric in the approximation order, so that a prescribed accuracy in the representation of the actual system can be easily obtained with the proposed model. The system itself can be understood as a simple representation of a building subject to transverse vibrations,...
We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...
We consider a simple model for the immune system
in which virus are able to undergo mutations and are in competition
with leukocytes. These mutations are related to several other concepts which have
been proposed in the literature like those of shape or of
virulence – a continuous notion. For a given species, the system admits a
globally attractive critical point. We prove that mutations do not affect this
picture for small perturbations and under strong structural assumptions.
Based on numerical...
We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
We describe both the classical Lagrangian and the
Eulerian methods for first order
Hamilton–Jacobi equations of geometric optic type.
We then explain the basic structure of the software
and how new solvers/models can be added to it.
A selection of numerical examples are presented.
This paper considers group synchronization issue of diffusively directed coupled harmonic oscillators for two cases with nonidentical and identical agent dynamics. For the case of coupled nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed group synchronization can always be achieved under two kinds of network structures, i. e., the strongly connected graph and the acyclic partition topology with a directed spanning tree. It is interesting to find that the...
In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function which is real analytic around a...
Currently displaying 381 –
400 of
1123