The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2201 – 2220 of 2633

Showing per page

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators

Andrey Andreev, Milena Racheva (2014)

Applications of Mathematics

This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which...

Un modello semplice per giustificare la legge di Paris

Adolfo Bacci (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera un corpo indefinito in deformazione piana con una fessura semiinfinita al cui apice è localizzata una zona plastica. Se i carichi crescono monotonamente in forma quasi statica, si determina la velocità di avanzamento dell'apice della fessura. Il risultato è esteso, sotto opportune ipotesi, a variazioni di carico cicliche. Ciò permette di trovare una relazione fra l'incremento di lunghezza della fessura e l'oscillazione del fattore di concentrazione degli sforzi, giustificando così la...

Un problema di ostacolo elastico non lineare per la piastra incastrata

Aldo Maceri (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si formula il problema della piastra su mezzo elastico con riferimento ad una particolare modellazione del comportamento di tale mezzo. Si ipotizza infatti una natura unilaterale del contatto tra la piastra, supposta sottile e linearmente elastica, ed il mezzo di fondazione (od ostacolo), per il quale si ipotizza un legame cubico tra spostamenti e reazioni. Tale modello costituisce una generalizzazione di quello ben noto di Winkler e si presta alla descrizione approssimata di numerosi casi della...

Un théorème d'existence en théorie non linéaire des coques minces

Philippe G. Ciarlet, Daniel Coutand (1999)

Journées équations aux dérivées partielles

Les équations bidimensionnelles d'une coque non linéairement élastique «en flexion» ont été récemment justifiées par V. Lods et B. Miara par la méthode des développements asymptotiques formels appliquée aux équations de l'élasticité non linéaire tridimensionnelle. Ces équations se mettent sous la forme d'un problème de point critique d'une fonctionnelle dont l'intégrande est une expression quadratique en termes de la différence exacte entre les tenseurs de courbure des surfaces déformée et non déformée,...

Currently displaying 2201 – 2220 of 2633