The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2301 – 2320 of 2633

Showing per page

Weight minimization of elastic plates using Reissner-Mindlin model and mixed-interpolated elements

Ivan Hlaváček (1996)

Applications of Mathematics

The problem to find an optimal thickness of the plate in a set of bounded Lipschitz continuous functions is considered. Mean values of the intensity of shear stresses must not exceed a given value. Using a penalty method and finite element spaces with interpolation to overcome the “locking” effect, an approximate optimization problem is proposed. We prove its solvability and present some convergence analysis.

Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí, Ulisse Stefanelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model

Alessandro Turco, François Alouges, Antonio DeSimone (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a phase field approach to wetting problems, related to the minimization of capillary energy. We discuss in detail both the Γ-convergence results on which our numerical algorithm are based, and numerical implementation. Two possible choices of boundary conditions, needed to recover Young's law for the contact angle, are presented. We also consider an extension of the classical theory of capillarity, in which the introduction of a dissipation mechanism can explain and predict the hysteresis...

Weyl formula with optimal remainder estimate of some elastic networks and applications

Kaïs Ammari, Mouez Dimassi (2010)

Bulletin de la Société Mathématique de France

We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.

Young-measure approximations for elastodynamics with non-monotone stress-strain relations

Carsten Carstensen, Marc Oliver Rieger (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density φ . Their time-evolution leads to a nonlinear wave equation u t t = div S ( D u ) with the non-monotone stress-strain relation S = D φ plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding very...

Young-Measure approximations for elastodynamics with non-monotone stress-strain relations

Carsten Carstensen, Marc Oliver Rieger (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density ϕ. Their time-evolution leads to a nonlinear wave equation u t t = div S ( D u ) with the non-monotone stress-strain relation S = D φ plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding...

Γ-convergence approach to variational problems in perforated domains with Fourier boundary conditions

Valeria Chiadò Piat, Andrey Piatnitski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound,...

Currently displaying 2301 – 2320 of 2633