Displaying 81 – 100 of 152

Showing per page

Exact boundary controllability of a hybrid system of elasticity by the HUM method

Bopeng Rao (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the exact controllability of a hybrid system consisting of an elastic beam, clamped at one end and attached at the other end to a rigid antenna. Such a system is governed by one partial differential equation and two ordinary differential equations. Using the HUM method, we prove that the hybrid system is exactly controllable in an arbitrarily short time in the usual energy space.

Exact Boundary Controllability of a Hybrid System of elasticity by the HUM Method

Bopeng Rao (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the exact controllability of a hybrid system consisting of an elastic beam, clamped at one end and attached at the other end to a rigid antenna. Such a system is governed by one partial differential equation and two ordinary differential equations. Using the HUM method, we prove that the hybrid system is exactly controllable in an arbitrarily short time in the usual energy space.

Exact controllability in fluid – solid structure: The Helmholtz model

Jean-Pierre Raymond, Muthusamy Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability...

Exact controllability in fluid–solid structure : the Helmholtz model

Jean-Pierre Raymond, Muthusamy Vanninathan (2005)

ESAIM: Control, Optimisation and Calculus of Variations

A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results....

Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions

Scott W. Hansen, Oleg Imanuvilov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Exact controllability results for a multilayer plate system are obtained from the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a classical three-layer “sandwich plate” system due to Rao and Nakra. The multilayer version involves a number of Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation. The plate is assumed to be either clamped or hinged and controls are assumed to be locally distributed in a neighborhood...

Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions

Scott W. Hansen, Oleg Imanuvilov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Exact controllability results for a multilayer plate system are obtained from the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a classical three-layer “sandwich plate” system due to Rao and Nakra. The multilayer version involves a number of Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation. The plate is assumed to be either clamped or hinged and controls are assumed to be locally distributed in a neighborhood...

Exact controllability of an elastic membrane coupled with a potential fluid

Scott Hansen (2001)

International Journal of Applied Mathematics and Computer Science

We consider the problem of boundary control of an elastic system with coupling to a potential equation. The potential equation represents the linearized motions of an incompressible inviscid fluid in a cavity bounded in part by an elastic membrane. Sufficient control is placed on a portion of the elastic membrane to insure that the uncoupled membrane is exactly controllable. The main result is that if the density of the fluid is sufficiently small, then the coupled system is exactly controllable....

Exact controllability of shells in minimal time

Paola Loreti (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].

Exact geometry solid-shell element based on a sampling surfaces technique for 3D stress analysis of doubly-curved composite shells

G. M. Kulikov, A. A. Mamontov, S. V. Plotnikova, S. A. Mamontov (2016)

Curved and Layered Structures

A hybrid-mixed ANS four-node shell element by using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the displacements of these surfaces as basic shell variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree In − 1 in the thickness direction for each layer permits the presentation of the layered shell formulation...

Existence and approximation results for gradient flows

Riccarda Rossi, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space H u ...

Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation

Jong Yeoul Park, Sun Hye Park (2006)

Czechoslovak Mathematical Journal

We consider the damped semilinear viscoelastic wave equation u ' ' - Δ u + 0 t h ( t - τ ) div { a u ( τ ) } d τ + g ( u ' ) = 0 in Ω × ( 0 , ) with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.

Existence and continuous dependence results in the dynamical theory of piezoelectricity

Michele Ciarletta (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The paper is concerned with the dynamical theory of linear piezoelectricity. First, an existence theorem is derived. Then, the continuous dependence of the solutions upon the initial data and body forces is investigated.

Currently displaying 81 – 100 of 152