The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1761 – 1780 of 2633

Showing per page

Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function

Ivan Hlaváček (1996)

Applications of Mathematics

Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.

Remarks on Carleman estimates and exact controllability of the Lamé system

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2002)

Journées équations aux dérivées partielles

In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.

Remarks on materials with memory

Victor Mizel (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The mistaken notion that consistency with fading memory should require uniqueness is refuted by citation of the sources. Indeed, insistence on uniqueness would exclude many examples from non-linear elasticity and would exclude materials capable of exhibiting hysteresis.

Remarks on the theory of elasticity

Sergio Conti, Camillo de Lellis (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L 2 norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L p -norm of the gradient with p > 2 is controlled...

Removing holes in topological shape optimization

Maatoug Hassine, Philippe Guillaume (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples...

Removing holes in topological shape optimization

Philippe Guillaume, Maatoug Hassine (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical...

Residual a posteriori error estimators for contact problems in elasticity

Patrick Hild, Serge Nicaise (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the unilateral contact problem in linear elasticity. We define two a posteriori error estimators of residual type to evaluate the accuracy of the mixed finite element approximation of the contact problem. Upper and lower bounds of the discretization error are proved for both estimators and several computations are performed to illustrate the theoretical results.

Currently displaying 1761 – 1780 of 2633