Anylysis of a simplified model of drop combustion.
Unidirectional motion along an annular water channel can be observed in an experiment even with only one camphor disk or boat. Moreover, the collective motion of camphor disks or boats in the water channel exhibits a homogeneous and an inhomogeneous state, depending on the number of disks or boats, which looks like a kind of bifurcation phenomena. In a theoretical research, the unidirectional motion is represented by a traveling wave solution in a model. Hence it suffices to investigate a linearized...
We have developed a multiphase flow code that has been applied to study the behavior of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation, discretization, and use the model for numerical investigation of sensitivity of the NAPL plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed repeatedly with modified parameters of the Brooks–Corey capillary...
We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.
The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...
In this paper we present an overview of some recent results on applications of knot theory in fluid mechanics, as part of a new discipline called `topological fluid mechanics' (TFM). The choice of the topics covered here is deliberately restricted to those areas that involve mainly a combination of ideal fluid mechanics techniques and knot theory concepts, complemented with a brief description of some other concepts that have important applications in fluid systems. We begin with the concept of...
We consider a linear model of interaction between a viscous incompressible fluid and a thin elastic structure located on a part of the fluid domain boundary, the other part being rigid. After having given an existence and uniqueness result for the direct problem, we study the question of approximate controllability for this system when the control acts as a normal force applied to the structure. The case of an analytic boundary has been studied by Lions and Zuazua in [9] where, in particular,...
We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, and . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.