The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 581 –
600 of
3487
We present one- and two-dimensional central-upwind schemes
for approximating solutions of the Saint-Venant system
with source terms due to bottom topography.
The Saint-Venant system has steady-state solutions
in which nonzero flux gradients are exactly balanced by
the source terms. It is a challenging problem to preserve
this delicate balance with numerical schemes.
Small perturbations of these states are also very difficult
to compute. Our approach is based on extending semi-discrete central...
In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
In this paper we show how abstract physical requirements are enough
to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
Continuum mechanics (e.g., hydrodynamics, elasticity theory) is based on the assumption
that a small set of fields provides a closed description on large space and time scales.
Conditions governing the choice for these fields are discussed in the context of granular
fluids and multi-component fluids. In the first case, the relevance of temperature or
energy as a hydrodynamic field is justified. For mixtures, the use of a total temperature
and single...
Nous montrons dans cette étude l’existence de configurations stationnaires où une bille tombe le long d’un plan incliné sans le toucher. Nous donnons également des propriétés qualitatives de ces configurations. En particulier, nous nous intéressons à l’orientation du plan par rapport à la verticale quand la masse de la bille est proche de celle d’un volume équivalent de liquide i.e., quand l’écoulement autour de la bille est lent.
In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
In this paper we investigate the motion of a rigid ball in an
incompressible perfect fluid occupying .
We prove the global in time existence and the uniqueness of
the classical solution for this fluid-structure problem. The proof relies
mainly on weighted estimates for the vorticity associated with
the strong solution of a fluid-structure problem
obtained by incorporating some dissipation.
Currently displaying 581 –
600 of
3487