The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The results of this paper concern exact controllability to the
trajectories for a coupled system of semilinear heat equations. We
have transmission conditions on the interface and Dirichlet boundary
conditions at the external part of the boundary so that the system can be
viewed as a single equation with discontinuous coefficients in the
principal part. Exact controllability to the trajectories is proved when we
consider distributed controls supported in the part of the domain where the
diffusion...
Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in and we derive estimates for the control time T.
We show exact null-controllability for two models of non-classical, parabolic partial differential equations with distributed control: (i) second-order structurally damped equations, except for a limit case, where exact null controllability fails; and (ii) thermo-elastic equations with hinged boundary conditions. In both cases, the problem is solved by duality.
The liner parabolic equation ∂y ∂t − 1 2 Δy + F · ∇ y = 1 x1d4aa; 0 u with Neumann boundary condition on a convex open domain x1d4aa; ⊂ ℝd with smooth boundary is exactly null controllable on each finite interval if 𝒪0is an open subset of x1d4aa; which contains a suitable neighbourhood of the recession cone of x1d4aa; . Here,F : ℝd → ℝd is a bounded, C1-continuous function, and F = ∇g, where g is convex and coercive.
We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.
This paper is concerned with the existence and approximate controllability for impulsive fractional-order stochastic infinite delay integro-differential equations in Hilbert space. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of impulsive fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided...
The paper is motivated by the study of interesting models from economics and the natural sciences where the underlying randomness contains jumps. Stochastic differential equations with Poisson jumps have become very popular in modeling the phenomena arising in the field of financial mathematics, where the jump processes are widely used to describe the asset and commodity price dynamics. This paper addresses the issue of approximate controllability of impulsive fractional stochastic differential...
In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are...
Currently displaying 41 –
52 of
52