Displaying 201 – 220 of 427

Showing per page

Invariant tracking

Philippe Martin, Pierre Rouchon, Joachim Rudolph (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G . Invariant output errors are defined as a set of scalar invariants of G ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...

Invariant tracking

Philippe Martin, Pierre Rouchon, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G, design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G. Invariant output errors are defined as a set of scalar invariants of G; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the...

Inversion in indirect optimal control of multivariable systems

François Chaplais, Nicolas Petit (2008)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration.

Linear adaptive structure for control of a nonlinear MIMO dynamic plant

Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski (2013)

International Journal of Applied Mathematics and Computer Science

In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a set of (stable)...

Linearization by completely generalized input-output injection

Virgilio López Morales, Franck Plestan, Alain Glumineau (1999)

Kybernetika

The problem addressed in this paper is the linearization of nonlinear systems by generalized input-output (I/O) injection. The I/O injection (called completely generalized I/O injection) depends on a finite number of time derivatives of input and output functions. The practical goal is the observer synthesis with linear error dynamics. The method is based on the I/O differential equation structure. Thus, the problem is solved as a realization one. A necessary and sufficient condition is proposed...

Local asymptotic stability for nonlinear state feedback delay systems

Alfredo Germani, Costanzo Manes, Pierdomenico Pepe (2000)

Kybernetika

This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented in this...

Local Controllability around Closed Orbits

Marek Grochowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.

Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

Sergio Guerrero (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we deal with the local exact controllability of the Navier-Stokes system with nonlinear Navier-slip boundary conditions and distributed controls supported in small sets. In a first step, we prove a Carleman inequality for the linearized Navier-Stokes system, which leads to null controllability of this system at any time T>0. Then, fixed point arguments lead to the deduction of a local result concerning the exact controllability to the trajectories of the Navier-Stokes system.

Local small time controllability and attainability of a set for nonlinear control system

Mikhail Krastanov, Marc Quincampoix (2001)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane....

Local small time controllability and attainability of a set for nonlinear control system

Mikhail Krastanov, Marc Quincampoix (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set...

Locally positive nonlinear systems

Tadeusz Kaczorek (2003)

International Journal of Applied Mathematics and Computer Science

The notion of locally positive nonlinear time-varying linear systems is introduced. Necessary and sufficient conditions for the local positiveness of nonlinear time-varying systems are established. The concept of local reachability in the direction of a cone is introduced, and sufficient conditions for local reachability in the direction of a cone of this class of nonlinear systems are presented.

Maxwell strata in sub-Riemannian problem on the group of motions of a plane

Igor Moiseev, Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

Currently displaying 201 – 220 of 427