The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
438
The concepts of stability, attractivity and asymptotic stability
for systems subject to restrictions of the input values are introduced
and analyzed in terms of Lyapunov functions. A comparison
with the well known input-to-state stability property introduced
by Sontag is provided. We use these concepts in order to derive
sufficient conditions for global stabilization for triangular and
feedforward systems by means of saturated bounded feedback controllers
and also recover some recent results...
The input-output decoupling problem is studied for a class of recursive nonlinear systems (RNSs), i. e. for systems, modelled by higher order nonlinear difference equations, relating the input, the output and a finite number of their time shifts. The solution of the problem via regular static feedback known for discrete-time nonlinear systems in state space form, is extended to RNSs. Necessary and sufficient conditions for local solvability of the problem are proposed. This is the alternative to...
Integrated design of observer based Fault Detection (FD) for a class of uncertain nonlinear systems with Lipschitz nonlinearities is studied. In the context of norm based residual evaluation, the residual generator and evaluator are designed together in an integrated form, and, based on it, a trade-off FD system is finally achieved in the sense that, for a given Fault Detection Rate (FDR), the False Alarm Rate (FAR) is minimized. A numerical example is given to illustrate the effectiveness of the...
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...
The problem of invariant output tracking is considered: given a control system
admitting a symmetry group G, design a feedback such that the
closed-loop system tracks a desired output reference and is invariant under the action of G.
Invariant output errors are defined as a set
of scalar invariants of G; they are calculated with the Cartan moving frame
method. It is shown that standard tracking methods based on input-output linearization can be applied to
these invariant errors to yield the...
This paper presents the role of vector relative degree in the
formulation of stationarity conditions of optimal control problems
for affine control systems. After translating the dynamics into a
normal form, we study the Hamiltonian structure. Stationarity
conditions are rewritten with a limited number of variables. The
approach is demonstrated on two and three inputs systems, then, we
prove a formal result in the general case. A mechanical system
example serves as illustration.
In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities...
In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a set of (stable)...
The problem addressed in this paper is the linearization of nonlinear systems by generalized input-output (I/O) injection. The I/O injection (called completely generalized I/O injection) depends on a finite number of time derivatives of input and output functions. The practical goal is the observer synthesis with linear error dynamics. The method is based on the I/O differential equation structure. Thus, the problem is solved as a realization one. A necessary and sufficient condition is proposed...
This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented in this...
We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.
Currently displaying 201 –
220 of
438