Displaying 301 – 320 of 427

Showing per page

Passivity based stabilization of non-minimum phase nonlinear systems

Juan C. Travieso-Torres, Manuel A. Duarte-Mermoud, Petr Zagalak (2009)

Kybernetika

A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation...

Poles and zeroes of nonlinear control systems

Jean-François Pommaret (2002)

Kybernetika

During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the...

Polynomial controller design based on flatness

Frédéric Rotella, Francisco Javier Carillo, Mounir Ayadi (2002)

Kybernetika

By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Polynomial controllers for finite-dimensional linear systems can then be designed with very natural choices for high level parameters design. This design leads to a Bezout equation which is independent of the closed loop dynamics but depends only on the system model.

Protector control: Extension to a class of nonlinear distributed systems

Youssef Qaraai, Abdes Samed Bernoussi (2010)

International Journal of Applied Mathematics and Computer Science

We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we provide a...

Reaching phase elimination in variable structure control of the third order system with state constraints

Andrzej Bartoszewicz, A. Nowacka (2006)

Kybernetika

In this paper the design of a time varying switching plane for the sliding mode control of the third order system subject to the velocity and acceleration constraints is considered. Initially the plane passes through the system representative point in the error state space and then it moves with a constant velocity to the origin of the space. Having reached the origin the plane stops and remains motionless. The plane parameters (determining angles of inclination and the velocity of its motion) are...

Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang, Claude H. Moog, Xiao Hua Xia (2010)

Kybernetika

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

Realization of nonlinear input-output equations in controller canonical form

Arvo Kaldmäe, Ülle Kotta (2018)

Kybernetika

In this paper necessary and sufficient conditions are given which guarantee that there exists a realization of a set of nonlinear higher order differential input-output equations in the controller canonical form. Two cases are studied, corresponding respectively to linear and nonlinear output functions. The conditions are formulated in terms of certain sequence of vector spaces of differential 1-forms. The proofs suggest how to construct the transformations, necessary to obtain the specific state...

Recursive identification algorithm for dynamic systems with output backlash and its convergence

Ruili Dong, Qingyuan Tan, Yonghong Tan (2009)

International Journal of Applied Mathematics and Computer Science

This paper proposes a recursive identification method for systems with output backlash that can be described by a pseudoWiener model. In this method, a novel description of the nonlinear part of the system, i.e., backlash, is developed. In this case, the nonlinear system is decomposed into a piecewise linearized model. Then, a modified recursive general identification algorithm (MRGIA) is employed to estimate the parameters of the proposed model. Furthermore, the convergence of the MRGIA for the...

Recursive identification of Wiener systems

Włodzimierz Greblicki (2001)

International Journal of Applied Mathematics and Computer Science

A Wiener system, i.e. a cascade system consisting of a linear dynamic subsystem and a nonlinear memoryless subsystem is identified. The a priori information is nonparametric, i.e. neither the functional form of the nonlinear characteristic nor the order of the dynamic part are known. Both the input signal and the disturbance are Gaussian white random processes. Recursive algorithms to estimate the nonlinear characteristic are proposed and their convergence is shown. Results of numerical simulation...

Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra

Ülle Kotta, Palle Kotta, Miroslav Halás (2010)

Kybernetika

The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer...

Remarks on exact controllability for the Navier-Stokes equations

Oleg Yu. Imanuvilov (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain ω Ω n , n { 2 , 3 } . The result that we obtained in this paper is as follows. Suppose that v ^ ( t , x ) is a given solution of the Navier-Stokes equations. Let v 0 ( x ) be a given initial condition and v ^ ( 0 , · ) - v 0 < ε where ε is small enough. Then there exists a locally distributed control u , supp u ( 0 , T ) × ω such that the solution v ( t , x ) of the Navier-Stokes equations: t v - Δ v + ( v , ) v = p + u + f , div v = 0 , v | Ω = 0 , v | t = 0 = v 0 coincides with...

Currently displaying 301 – 320 of 427