Poisson-Nijenhuis structures
Yvette Kosmann-Schwarzbach; Franco Magri
Annales de l'I.H.P. Physique théorique (1990)
- Volume: 53, Issue: 1, page 35-81
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKosmann-Schwarzbach, Yvette, and Magri, Franco. "Poisson-Nijenhuis structures." Annales de l'I.H.P. Physique théorique 53.1 (1990): 35-81. <http://eudml.org/doc/76495>.
@article{Kosmann1990,
author = {Kosmann-Schwarzbach, Yvette, Magri, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Poisson-Nijenhuis structure; Poisson-Lie group; complete integrability; deformation; dualization},
language = {eng},
number = {1},
pages = {35-81},
publisher = {Gauthier-Villars},
title = {Poisson-Nijenhuis structures},
url = {http://eudml.org/doc/76495},
volume = {53},
year = {1990},
}
TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
AU - Magri, Franco
TI - Poisson-Nijenhuis structures
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 1
SP - 35
EP - 81
LA - eng
KW - Poisson-Nijenhuis structure; Poisson-Lie group; complete integrability; deformation; dualization
UR - http://eudml.org/doc/76495
ER -
References
top- [1] M. Adler and P. Van Moerbeke, Kowalewski's asymptotic method, Kac-Moody Lie algebras and regularization, Comm. Math. Phys., T. 83, 1982, pp. 83-106. Zbl0491.58017MR648360
- [2] R. Aminou, Groupes de Lie-Poisson et bigèbres de Lie, Thèse, Université des Sciences et Techniques de Lille Flandres Artois, June 1988. Zbl0667.16006
- [3] K.H. Bhaskara and K. Viswanath, Calculus on Poisson manifolds, Bull. London Math. Soc., T. 20, 1988, pp. 68-72. Zbl0611.58002MR916078
- [4] K. H, BHASKARA and K. Viswanath, Poisson algebras and Poisson manifolds, Pitman Research Notes in Math., Longman, 1988. Zbl0671.58001MR960879
- [5] R. Bkouche, Structures (K, A)-linéaires, C. R. Acad. Sci. Paris, T. 262, série A, 1966, pp. 373-376. Zbl0139.25801MR197492
- [6] J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geometry, T. 28, 1988, pp. 93-114. Zbl0634.58029MR950556
- [7] C. Buttin, Les dérivations des champs de tenseurs et l'invariant différentiel de Schouten, C. R. Acad. Sci. Paris, T. 269, série A, 1969, pp. 87-89. Zbl0187.43904MR248662
- [8] E. Caccese, On some involution theorems on twofold Poisson manifolds, Lett. Math. Physics, T. 15, 1988, pp. 193-200. Zbl0652.58029MR948352
- [9] A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques, Publ. Dép. Math. Université de Lyon-I, 2/A, 1987. Zbl0668.58017
- [10] C.M. De Barros, Espaces infinitésimaux, Cahiers Topol. Géom. Diff., T. 7, 1965.
- [11] C.M. De Barros, Opérateurs infinitésimaux sur l'algèbre des formes différentielles extérieures, C. R. Acad. Sci. Paris, T. 261, Groupe 1, 1965, pp. 4594-4597. Zbl0139.39803MR188926
- [12] I. Ya. Dorfman, Deformations of Hamiltonian structures and integrable systems, in Nonlinear phenomena and turbulence, Gordon and Breach, 1984. MR824793
- [13] H. Flaschka, The Toda lattice in the complex domain, in Algebraic Analysis, in honor of Sato, M. KASHIWARA and T. KAWAI Eds., Vol. 1, Academic Press, 1988. Zbl0688.58015MR992451
- [14] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I. Derivations in the graded ring of differential forms, Indag. Math., T. 18, 1956, pp. 338- 350 and 351-359. Zbl0079.37502MR82554
- [15] I.M. Gel'Fand and I.Ya. Dorfman, Hamiltonian operators and the classical Yang–Baxter equation, Funct. Anal. Appl., T. 16, No. 4. 1982, pp. 241-248. Zbl0527.58018MR684122
- [16] J.C. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris, T. 236, 1953, I, pp. 1935- 1937 and II, pp. 2289-2291. Zbl0050.03201
- [17] H.G. Heuser, Functional Analysis, Wiley, New York1982. Zbl0465.47001
- [18] J. Huebschmann, Poison cohomology and quantization, J. für die Reine und Angew. Math. (to appear). Zbl0699.53037MR1058984
- [19] M.V. Karasev, Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. U.S.S.R. Izvestiya, T. 28, No. 3, 1987, pp. 497-527 (in Russian, Izvestiya, T. 50, 1986). Zbl0624.58007MR854594
- [20] D. Kastler and R. Stora, Lie-Cartan pairs, J. Geom. and Physics, T. 2, No. 3, 1985. Zbl0593.17009MR851120
- [21] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability, Part I. Drinfeld bigebras, dual extensions and their canonical representations, Ann. Inst. Henri Poincaré, série A (Physique théorique), T. 49, No. 4, 1988, pp. 433- 460, Parts II and III in preparation. Zbl0667.16005MR988946
- [21 a] Y. Kosmann-Schwarzbach, The modified Yang-Baxter equation and bihamiltonian structures, in Differential Geometric Methods in Theoretical Physics (Chester, August 1988), A. SOLOMON Ed., World Scientific, Singapore, 1989, pp. 12-25. MR1124411
- [22] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math., T. 34, 1979, pp. 195-338. Zbl0433.22008MR550790
- [23] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les mathématiques d'aujourd'hui, Société Mathématique de France, Astérisque, hors série, 1985, pp. 257-271. Zbl0615.58029MR837203
- [24] I.S. Krasil'Shchik, Schouten bracket and canonical algebras, in Global Analysis III, Lect. Notes Math., No. 1334, 1988, pp. 79-110. Zbl0661.53059MR964696
- [25] J. Lehmann-Lejeune, Étude des formes différentielles liées à certaines G-structures, C. R. Acad. Sci. Paris, T. 260, Groupe 1, 1965, pp. 1838-1841. Zbl0135.40503MR180943
- [26] J. Lehmann-Lejeune, Intégrabilité des G-structures définies par une 1-forme 0-déformable à valeurs dans le fibré tangent, Ann. Inst. Fourier, Grenoble, T. 16, No. 2, 1966, pp. 329-387. Zbl0145.42103MR212720
- [27] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom., T. 12, 1977, pp. 253-300. Zbl0405.53024MR501133
- [28] Jiang-Hua Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geometry, T. 31, 1990, pp. 501-526. Zbl0673.58018MR1037412
- [29] K. Mackenzie, Lie groupoids and Lie algebroids in Differential Geometry, London Math. Soc. Lect. Notes, No. 124, Cambridge University Press, 1987. Zbl0683.53029
- [30] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno, S 19, 1984, University of Milan.
- [31] F. Magri, C. Morosi and O. Pagnisco, Reduction techniques for infinite-dimensional Hamiltonian systems: Some ideas and applications, Comm. Math. Phys., T. 99, 1985, pp. 115-140. Zbl0602.58017MR791643
- [31 a] F. Magri, Geometry and soliton equations, in La Mécanique Analytique de Lagrange et son héritage, Collège de France, September 1988 (to appear). MR1362129
- [32] Sh. Majid, Non-commutative-geometric Groups by a Bicrossproduct construction: Hopf algebras at the Planck scale, Ph. D. Thesis, Harvard University, August 1988.
- [33] P. Michor, Remarks on the Schouten-Nijenhuis bracket, Rendiconti Circ. Mat. Palermo (2), Suppl. No. 16, 1987, pp. 207-215. Zbl0646.53013MR946726
- [34] E. Nelson, Tensor Analysis, Princeton University Press, 1967. Zbl0152.39001
- [35] A. Nijenhuis and R.W. Richardson Jr., Deformations of Lie algebra structures, J. Math. and Mech., T. 17, No. 1, 1967, pp. 89-105. Zbl0166.30202MR214636
- [36] R. Ouzilou, Hamiltonian actions on Poisson manifolds, in Symplectic Geometry, A. CRUMEYROLLE and J. GRIFONE Eds., Research Notes in Math., No. 80, Pitman, 1983. Zbl0514.58010MR712169
- [37] R.S. Palais, The Cohomology of Lie rings, Proc. Symp. Pure Math., 3, Amer. Math. Soc., 1961, pp. 130-137. Zbl0126.03404MR125867
- [38] J. Pradines, Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, T. 264, série A, 1967, pp. 245-248. Zbl0154.21704MR216409
- [39] G.S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc., T. 108, 1963, p. 195-222. Zbl0113.26204MR154906
- [40] J.A. Schouten, On the differential operators of first order in tensor calculus, Conv. di Geom. Differen., 1953, Cremonese, Rome, 1954. Zbl0052.38204MR63750
- [41] M.A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl., T. 17, No. 4, 1983, pp. 259-272. Zbl0535.58031
- [42] A. Weinstein, Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo, Sect. 1 A, Math., T. 36, 1988, pp. 163-167. Zbl0653.58012MR931446
- [43] H. Yoshida, Integrability of generalized Toda lattice systems and singularities in the complex t-plane, in Nonlinear Integrable Systems, Classical Theory and Quantum Theory, World Scientific, Singapore, 1983. Zbl0566.70021MR725708
Citations in EuDML Documents
top- Izu Vaisman, Complementary 2-forms of Poisson structures
- Janusz Grabowski, Paweŀ Urbański, On characterization of Poisson and Jacobi structures
- Pantelis A. Damianou, Rui Loja Fernandes, Integrable hierarchies and the modular class
- Yvette Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras
- Ping Xu, Hyper-Lie Poisson structures
- Yvette Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras
- Yvette Kosmann-Schwarzbach, Juan Monterde, Divergence operators and odd Poisson brackets
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.