Displaying similar documents to “Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces”

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show...

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz (2002)

Studia Mathematica

Similarity:

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then...

Solution of a functional equation on compact groups using Fourier analysis

Abdellatif Chahbi, Brahim Fadli, Samir Kabbaj (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G be a compact group, let n N { 0 , 1 } be a fixed element and let σ be a continuous automorphism on G such that σ n = I . Using the non-abelian Fourier transform, we determine the non-zero continuous solutions f : G C of the functional equation f ( x y ) + k = 1 n - 1 f ( σ k ( y ) x ) = n f ( x ) f ( y ) , x , y G , in terms of unitary characters of G .

Pointwise Fourier inversion of distributions on spheres

Francisco Javier González Vieli (2017)

Czechoslovak Mathematical Journal

Similarity:

Given a distribution T on the sphere we define, in analogy to the work of Łojasiewicz, the value of T at a point ξ of the sphere and we show that if T has the value τ at ξ , then the Fourier-Laplace series of T at ξ is Abel-summable to τ .

Distributions of truncations of the heat kernel on the complex projective space

Nizar Demni (2014)

Annales mathématiques Blaise Pascal

Similarity:

Let ( U t ) t 0 be a Brownian motion valued in the complex projective space P N - 1 . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of | U t 1 | 2 and of ( | U t 1 | 2 , | U t 2 | 2 ) , and express them through Jacobi polynomials in the simplices of and 2 respectively. More generally, the distribution of ( | U t 1 | 2 , , | U t k | 2 ) , 2 k N - 1 may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group 𝒰 ( N - k + 1 ) yet computations become tedious. We also revisit the approach initiated in [] and...

Property C for ODE and Applications to an Inverse Problem for a Heat Equation

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let j : = - d ² / d x ² + k ² q j ( x ) , k = const > 0, j = 1,2, 0 < e s s i n f q j ( x ) e s s s u p q j ( x ) < . Suppose that (*) 0 1 p ( x ) u ( x , k ) u ( x , k ) d x = 0 for all k > 0, where p is an arbitrary fixed bounded piecewise-analytic function on [0,1], which changes sign finitely many times, and u j solves the problem j u j = 0 , 0 ≤ x ≤ 1, u j ' ( 0 , k ) = 0 , u j ( 0 , k ) = 1 . It is proved that (*) implies p = 0. This result is applied to an inverse problem for a heat equation.

Multifractal analysis of the divergence of Fourier series

Frédéric Bayart, Yanick Heurteaux (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

A famous theorem of Carleson says that, given any function f L p ( 𝕋 ) , p ( 1 , + ) , its Fourier series ( S n f ( x ) ) converges for almost every x 𝕋 . Beside this property, the series may diverge at some point, without exceeding O ( n 1 / p ) . We define the divergence index at  x as the infimum of the positive real numbers β such that S n f ( x ) = O ( n β ) and we are interested in the size of the exceptional sets E β , namely the sets of  x 𝕋 with divergence index equal to  β . We show that quasi-all functions in  L p ( 𝕋 ) have a multifractal behavior with respect to...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

A complete analogue of Hardy's theorem on semisimple Lie groups

Rudra P. Sarkar (2002)

Colloquium Mathematicae

Similarity:

A result by G. H. Hardy ([11]) says that if f and its Fourier transform f̂ are O ( | x | m e - α x ² ) and O ( | x | e - x ² / ( 4 α ) ) respectively for some m,n ≥ 0 and α > 0, then f and f̂ are P ( x ) e - α x ² and P ' ( x ) e - x ² / ( 4 α ) respectively for some polynomials P and P’. If in particular f is as above, but f̂ is o ( e - x ² / ( 4 α ) ) , then f = 0. In this article we will prove a complete analogue of this result for connected noncompact semisimple Lie groups with finite center. Our proof can be carried over to the real reductive groups of the Harish-Chandra class.

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

Similarity:

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator...

The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui (2020)

Czechoslovak Mathematical Journal

Similarity:

Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

Similarity:

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

On the higher power moments of cusp form coefficients over sums of two squares

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Similarity:

Let f be a normalized primitive holomorphic cusp form of even integral weight for the full modular group Γ = SL ( 2 , ) . Denote by λ f ( n ) the n th normalized Fourier coefficient of f . We are interested in the average behaviour of the sum a 2 + b 2 x λ f j ( a 2 + b 2 ) for x 1 , where a , b and j 9 is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power L -functions and Rankin-Selberg L -functions.

On the real X -ranks of points of n ( ) with respect to a real variety X n

Edoardo Ballico (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let  X n be an integral and non-degenerate m -dimensional variety defined over . For any P n ( ) the real X -rank r X , ( P ) is the minimal cardinality of S X ( ) such that P S . Here we extend to the real case an upper bound for the X -rank due to Landsberg and Teitler.

On the average behavior of the Fourier coefficients of j th symmetric power L -function over certain sequences of positive integers

Anubhav Sharma, Ayyadurai Sankaranarayanan (2023)

Czechoslovak Mathematical Journal

Similarity:

We investigate the average behavior of the n th normalized Fourier coefficients of the j th ( j 2 be any fixed integer) symmetric power L -function (i.e., L ( s , sym j f ) ), attached to a primitive holomorphic cusp form f of weight k for the full modular group S L ( 2 , ) over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum S j * : = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 ) , where x is sufficiently large, and L ( s , sym j f ) : = n = 1 λ sym j f ( n ) n s . When j = 2 , the error term which we obtain improves the earlier known result.