The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Classe de conjugaison du frobenius des variétés abéliennes à réduction ordinaire”

Comparaison entre cohomologie cristalline et cohomologie étale p -adique sur certaines variétés de Shimura

Sandra Rozensztajn (2009)

Bulletin de la Société Mathématique de France

Similarity:

Soit X un modèle entier en un premier p d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif G . On peut associer aux p -représentations du groupe G deux types de faisceaux : des cristaux sur la fibre spéciale de X , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.

Sur l’indépendance de l en cohomologie l -adique sur les corps locaux

Weizhe Zheng (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Gabber a déduit son théorème d’indépendance de  l de la cohomologie d’intersection d’un résultat général de stabilité sur les corps finis. Dans cet article, nous démontrons un analogue sur les corps locaux de ce résultat général. Plus précisément, nous introduisons une notion d’indépendance de  l pour les systèmes de complexes de faisceaux l -adiques sur les schémas de type fini sur un corps local équivariants sous des groupes finis et nous établissons sa stabilité par les six opérations...

Espaces homogènes et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind

Jean-Claude Douai (1995)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit S un schéma arithmétique de dimension 1 , c’est-à-dire le spectre de l’anneau des entiers d’un corps de nombres ou une courbe algébrique, lisse, irréductible, définie sur un corps fini ou algébriquement clos. Nous associons à un S -espace homogène (à gauche) X d’un groupe réductif G dont l’isotropie est aussi un groupe réductif H une classe caractéristique qui, dans le cas où H est semi-simple, vit dans un H 3 de S à valeurs dans le noyau du revêtement universel d’une S -forme de H ....

Applications depuis K ( / p , 2 ) et une conjecture de N. Kuhn

Gérald Gaudens, Lionel Schwartz (2013)

Annales de l’institut Fourier

Similarity:

Dans cet article on démontre une conjecture de N. Kuhn : si la cohomologie singulière modulo un nombre premier p d’un espace est finiment engendrée comme module sur l’algèbre de Steenrod, alors elle est finie. On donne aussi des formes plus fortes de ce résultat. Le second auteur en avait déjà donné une démonstration dans un article précédent. Cependant dans le cas d’un nombre premier impair la preuve comportait une lacune sans hypothèse supplémentaire sur la cohomologie de l’espace,...

Représentations linéaires des groupes kählériens et de leurs analogues projectifs

Fréderic Campana, Benoît Claudon, Philippe Eyssidieux (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si G GL n ( ) est l’image d’une représentation linéaire d’un groupe kählérien π 1 ( X ) , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse X ' . Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe...

Théorie de Fontaine en égales caractéristiques

Alain Genestier, Vincent Lafforgue (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Les chtoucas locaux sont des analogues en égales caractéristiques des groupes p -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local K de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension...

Quelques résultats d'isomorphisme entre groupes de cohomologie

Salomon Sambou, Mansour Sané (2012)

Annales Polonici Mathematici

Similarity:

Nous montrons des isomorphismes entre groupes de cohomologie des formes différentielles de classe C et celles de classe C l pour un ouvert Ω d’une variété analytique complexe. On montre que ces résultats sont également vrais pour les courants prolongeables. On en déduit un résultat d’isomorphisme entre le groupe H 0 , r l ( S ) de cohomologie de Dolbeault des formes différentielles de classe C l sur une hypersurface réelle S et celui des courants sur S noté H 0 , r c o u r ( S ) .

Singularités à l’infini et intégration motivique

Michel Raibaut (2012)

Bulletin de la Société Mathématique de France

Similarity:

Soit k un corps de caractéristique nulle et f une fonction non constante définie sur une variété lisse. Nous définissons dans cet article unequi appartient à un anneau de Grothendieck des variétés. Elle est définie en termes d’une compactification choisie, non nécessairement lisse, mais est indépendante de ce choix. Lorsque k est le corps des nombres complexes, en utilisant le morphisme de réalisation de Hodge, elle se réalise en le spectre à l’infini de f . Nous la calculons par exemple,...

Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux

Matthieu Willems (2004)

Bulletin de la Société Mathématique de France

Similarity:

L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base { ξ ^ w } w W de H T * ( G / B ) (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base { ψ ^ w } w W de K T ( G / B ) définie par Kostant et...

Sur le rang des variétés abéliennes sur un corps de fonctions

Amílcar Pacheco (2014)

Publications mathématiques de Besançon

Similarity:

Ce texte est un survey concernant la question du rang d’une variété abélienne A sur un corps de fonctions K en une variable sur un corps de base k . Il s’agit non seulement de discuter une borne supérieure pour ce rang, mais aussi d’étudier le comportement de cette borne si on prend une extension abélienne finie L de K . On se demande aussi : que se passe-t-il quand on enlève cette dernière hypothèse ? Dans un cas particulier, on discute de la validité d’un analogue du théorème de Lang-Néron....

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du...

Un théorème de Beilinson-Bernstein pour les 𝒟 -modules arithmétiques

Christine Noot-Huyghe (2009)

Bulletin de la Société Mathématique de France

Similarity:

Un résultat important de la théorie des groupes, démontré indépendemment dans les années 80 par Beilinson et Bernstein, Brylinski et Kashiwara, est un résultat d’affinité des 𝒟 -modules sur la variété de drapeaux d’un groupe réductif sur le corps des nombres complexes. Nous donnons ici un analogue arithmétique de ce résultat, pour la catégorie des 𝒟 -modules arithmétiques sur la variété de drapeaux d’un groupe réductif sur un anneau de valuation discrète complet d’inégales caractéristiques...

Sur le rang des jacobiennes sur un corps de fonctions

Marc Hindry, Amílcar Pacheco (2005)

Bulletin de la Société Mathématique de France

Similarity:

Soit f : 𝒳 C une surface projective fibrée au-dessus d’une courbe et définie sur un corps de nombres k . Nous donnons une interprétation du rang du groupe de Mordell-Weil sur k ( C ) de la jacobienne de la fibre générique (modulo la partie constante) en termes de moyenne des traces de Frobenius sur les fibres de f . L’énoncé fournit une réinterprétation de la conjecture de Tate pour la surface 𝒳 et généralise des résultats de Nagao, Rosen-Silverman et Wazir.

Estimées pour les valuations p -adiques des valeurs propres des opérateurs de Hecke

Vincent Lafforgue (2011)

Bulletin de la Société Mathématique de France

Similarity:

Pour les formes automorphes cuspidales sur les corps de fonctions et pour les formes automorphes cuspidales cohomologiques sur les corps de nombres, on donne des estimées pour les valuations p -adiques des valeurs propres des opérateurs de Hecke. Dans le cas des corps de nombres, ces estimées correspondent aux estimées de Katz-Mazur par les conjectures de Langlands.