Displaying 101 – 120 of 163

Showing per page

Prime Filters and Ideals in Distributive Lattices

Adam Grabowski (2013)

Formalized Mathematics

The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the Mizar Mathematical Library, there are some attempts to formalize prime ideals and filters; one series of articles written as decoding [9] proven some results; we tried however to follow [21], [12], and [13]. All three were devoted to the Stone representation theorem [18] for Boolean or Heyting lattices. The main aim of the present article was to bridge...

Product Pre-Measure

Noboru Endou (2016)

Formalized Mathematics

In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

Propositional Linear Temporal Logic with Initial Validity Semantics1

Mariusz Giero (2015)

Formalized Mathematics

In the article [10] a formal system for Propositional Linear Temporal Logic (in short LTLB) with normal semantics is introduced. The language of this logic consists of “until” operator in a very strict version. The very strict “until” operator enables to express all other temporal operators. In this article we construct a formal system for LTLB with the initial semantics [12]. Initial semantics means that we define the validity of the formula in a model as satisfaction in the initial state of model...

Quasi-uniform Space

Roland Coghetto (2016)

Formalized Mathematics

In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space. We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.

Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module

Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we formalize some basic facts of Z-module. In the first section, we discuss the rank of submodule of Z-module and its properties. Especially, we formally prove that the rank of any Z-module is equal to or more than that of its submodules, and vice versa, and that there exists a submodule with any given rank that satisfies the above condition. In the next section, we mention basic facts of linear transformations between two Z-modules. In this section, we define homomorphism between...

Restricted ideals and the groupability property. Tools for temporal reasoning

J. Martínez, P. Cordero, G. Gutiérrez, I. P. de Guzmán (2003)

Kybernetika

In the field of automatic proving, the study of the sets of prime implicants or implicates of a formula has proven to be very important. If we focus on non-classical logics and, in particular, on temporal logics, such study is useful even if it is restricted to the set of unitary implicants/implicates [P. Cordero, M. Enciso, and I. de Guzmán: Structure theorems for closed sets of implicates/implicants in temporal logic. (Lecture Notes in Artificial Intelligence 1695.) Springer–Verlag, Berlin 1999]....

Riemann Integral of Functions from ℝ into Real Banach Space

Keiko Narita, Noboru Endou, Yasunari Shidama (2013)

Formalized Mathematics

In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the...

Riemann-Stieltjes Integral

Keiko Narita, Kazuhisa Nakasho, Yasunari Shidama (2016)

Formalized Mathematics

In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties. In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described...

Semiring of Sets

Roland Coghetto (2014)

Formalized Mathematics

Schmets [22] has developed a measure theory from a generalized notion of a semiring of sets. Goguadze [15] has introduced another generalized notion of semiring of sets and proved that all known properties that semiring have according to the old definitions are preserved. We show that this two notions are almost equivalent. We note that Patriota [20] has defined this quasi-semiring. We propose the formalization of some properties developed by the authors.

Semiring of Sets: Examples

Roland Coghetto (2014)

Formalized Mathematics

This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

Separability of Real Normed Spaces and Its Basic Properties

Kazuhisa Nakasho, Noboru Endou (2015)

Formalized Mathematics

In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section,...

Sequent Calculus, Derivability, Provability. Gödel's Completeness Theorem

Marco Caminati (2011)

Formalized Mathematics

Fifth of a series of articles laying down the bases for classical first order model theory. This paper presents multiple themes: first it introduces sequents, rules and sets of rules for a first order language L as L-dependent types. Then defines derivability and provability according to a set of rules, and gives several technical lemmas binding all those concepts. Following that, it introduces a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial cluster registrations...

Some Algebraic Properties of Polynomial Rings

Christoph Schwarzweller, Artur Korniłowicz (2016)

Formalized Mathematics

In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/ is isomorphic to the field of polynomials with degree smaller than the one of p.

Some Facts about Trigonometry and Euclidean Geometry

Roland Coghetto (2014)

Formalized Mathematics

We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that...

Some key research problems in automated theorem proving for hardware and software verification.

Matt Kaufmann, J. Strother Moore (2004)

RACSAM

This paper sketches the state of the art in the application of mechanical theorem provers to the verification of commercial computer hardware and software. While the paper focuses on the theorem proving system ACL2, developed by the two authors, it references much related work in formal methods. The paper is intended to satisfy the curiosity of readers interested in logic and artificial intelligence as to the role of mechanized theorem proving in hardware and software design today. In addition,...

Some Properties of the Sorgenfrey Line and the Sorgenfrey Plane

Adam St. Arnaud, Piotr Rudnicki (2013)

Formalized Mathematics

We first provide a modified version of the proof in [3] that the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result. Next, we prove that all subspaces of ℝ1 (that is the real line with the usual topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We prove that the Sorgenfrey plane...

Some Remarkable Identities Involving Numbers

Rafał Ziobro (2014)

Formalized Mathematics

The article focuses on simple identities found for binomials, their divisibility, and basic inequalities. A general formula allowing factorization of the sum of like powers is introduced and used to prove elementary theorems for natural numbers. Formulas for short multiplication are sometimes referred in English or French as remarkable identities. The same formulas could be found in works concerning polynomial factorization, where there exists no single term for various identities. Their usability...

Currently displaying 101 – 120 of 163