Displaying 101 – 120 of 145

Showing per page

On the structure of continuous uninorms

Paweł Drygaś (2007)

Kybernetika

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangular norms and conorms. We ask about properties of increasing, associative, continuous binary operation U in the unit interval with the neutral element e [ 0 , 1 ] . If operation U is continuous, then e = 0 or e = 1 . So, we consider operations which are continuous in the open unit square. As a result every associative, increasing binary operation with the neutral element e ( 0 , 1 ) , which is continuous in the open unit square may be given in [ 0 , 1 ) 2 ...

On the T -conditionality of T -power based implications

Zuming Peng (2022)

Kybernetika

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the T -conditionality for T -power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication I T being T -conditional are obtained. Moreover, the sufficient conditions under which a power based implication I T is T * -conditional are discussed, this discussions give an...

Parametric families of fuzzy consequence operators.

Javier Elorza, Pedro Burillo (2004)

Mathware and Soft Computing

In a previous paper we explored the notion of coherent fuzzy consequence operator. Since we did not know of any example in the literature of non-coherent fuzzy consequence operator, we also showed several families of such operators. It is well-known that the operator induced by a fuzzy preorder through Zadeh's compositional rule is always a coherent fuzzy consequence operator. It is also known that the relation induced by a fuzzy consequence operator is a fuzzy preorder if such operator is coherent....

Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and MV-algebras

Leonardo Cabrer, Sergio Celani (2006)

Open Mathematics

In this work we give a duality for many classes of lattice ordered algebras, as Integral Commutative Distributive Residuated Lattices MTL-algebras, IMTL-algebras and MV-algebras (see page 604). These dualities are obtained by restricting the duality given by the second author for DLFI-algebras by means of Priestley spaces with ternary relations (see [2]). We translate the equations that define some known subvarieties of DLFI-algebras to relational conditions in the associated DLFI-space.

Program for generating fuzzy logical operations and its use in mathematical proofs

Tomáš Bartušek, Mirko Navara (2002)

Kybernetika

Fuzzy logic is one of the tools for management of uncertainty; it works with more than two values, usually with a continuous scale, the real interval [ 0 , 1 ] . Implementation restrictions in applications force us to use in fact a finite scale (finite chain) of truth degrees. In this paper, we study logical operations on finite chains, in particular conjunctions. We describe a computer program generating all finitely-valued fuzzy conjunctions ( t -norms). It allows also to select these t -norms according to...

Pseudo B L -algebras and D R -monoids

Jan Kühr (2003)

Mathematica Bohemica

It is shown that pseudo B L -algebras are categorically equivalent to certain bounded D R -monoids. Using this result, we obtain some properties of pseudo B L -algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo B L -algebras and, in conclusion, we prove that they form a variety.

Putting together Lukasiewicz and product logics.

Francesc Esteva, Lluis Godo (1999)

Mathware and Soft Computing

In this paper we investigate a propositional fuzzy logical system LΠ which contains the well-known Lukasiewicz, Product and Gödel fuzzy logics as sublogics. We define the corresponding algebraic structures, called LΠ-algebras and prove the following completeness result: a formula φ is provable in the LΠ logic iff it is a tautology for all linear LΠ-algebras. Moreover, linear LΠ-algebras are shown to be embeddable in linearly ordered abelian rings with a strong unit and cancellation law.

QL-implications versus D-implications

Margarita Mas, Miquel Monserrat, Joan Torrens (2006)

Kybernetika

This paper deals with two kinds of fuzzy implications: QL and Dishkant implications. That is, those defined through the expressions I ( x , y ) = S ( N ( x ) , T ( x , y ) ) and I ( x , y ) = S ( T ( N ( x ) , N ( y ) ) , y ) respectively, where T is a t-norm, S is a t-conorm and N is a strong negation. Special attention is due to the relation between both kinds of implications. In the continuous case, the study of these implications is focused in some of their properties (mainly the contrapositive symmetry and the exchange principle). Finally, the case of non continuous t-norms...

Representation of logic formulas by normal forms

Martina Daňková (2002)

Kybernetika

In this paper, we deal with the disjunctive and conjunctive normal forms in the frame of predicate BL-logic and prove theirs conditional equivalence to appropriate formulas. Our aim is to show approximation ability of special normal forms defined by means of reflexive binary predicate.

Representation of uni-nullnorms and null-uninorms on bounded lattices

Yi-Qun Zhang, Ya-Ming Wang, Hua-Wen Liu (2024)

Kybernetika

In this paper, we present the representation for uni-nullnorms with disjunctive underlying uninorms on bounded lattices. It is shown that our method can cover the representation of nullnorms on bounded lattices and some of existing construction methods for uni-nullnorms on bounded lattices. Illustrative examples are presented simultaneously. In addition, the representation of null-uninorms with conjunctive underlying uninorms on bounded lattices is obtained dually.

Residual implications and co-implications from idempotent uninorms

Daniel Ruiz, Joan Torrens (2004)

Kybernetika

This paper is devoted to the study of implication (and co-implication) functions defined from idempotent uninorms. The expression of these implications, a list of their properties, as well as some particular cases are studied. It is also characterized when these implications satisfy some additional properties specially interesting in the framework of implication functions, like contrapositive symmetry and the exchange principle.

S-implications and R -implications on a finite chain

Margarita Mas, Miquel Monserrat, Joan Torrens (2004)

Kybernetika

This paper is devoted to the study of two kinds of implications on a finite chain L : S -implications and R -implications. A characterization of each kind of these operators is given and a lot of different implications on L are obtained, not only from smooth t-norms but also from non smooth ones. Some additional properties on these implications are studied specially in the smooth case. Finally, a class of non smooth t-norms including the nilpotent minimum is characterized. Any t-norm in this class...

Smooth implications on a finite chain

Yong Su (2019)

Kybernetika

Mas et al. adapted the notion of smoothness, introduced by Godo and Sierra, and discussed two kinds of smooth implications (a discrete counterpart of continuous fuzzy implications) on a finite chain. This work is devoted to exploring the formal relations between smoothness and other six properties of implications on a finite chain. As a byproduct, several classes of smooth implications on a finite chain are characterized.

Currently displaying 101 – 120 of 145