On A Many-Valued Sentential Calculus
This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions for which a uninorm of this special class exists...
Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
A standard bridge between automata theory and logic is provided by the notion of characteristic formula. This paper investigates this problem for the class of event-recording automata (ERA), a subclass of timed automata in which clocks are associated with actions and that enjoys very good closure properties. We first study the problem of expressing characteristic formulae for ERA in Event-Recording Logic (ERL ), a logic introduced by Sorea to express event-based timed specifications. We prove that...
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical...
We prove the undecidability of Core XPath 1.0 (CXP) [G. Gottlob and C. Koch, in Proc. of 17th Ann. IEEE Symp. on Logic in Computer Science, LICS ’02 (Copenhagen, July 2002). IEEE CS Press (2002) 189–202.] extended with an Inflationary Fixed Point (IFP) operator. More specifically, we prove that the satisfiability problem of this language is undecidable. In fact, the fragment of CXP+IFP containing only the self and descendant axes is already undecidable.