Statistical estimation of deducibility in polyadic algebras
The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which...
In [vB88], Johan van Benthem introduces Relational Semantics (RelSem for short), and states Soundness Theorem for Lambek Calculus (LC) w.r.t. RelSem. After doing this, he writes: "it would be very interesting to have the converse too", i.e., to have Completeness Theorem. The same question is in [vB91, p. 235]. In the following, we state Strong Completeness Theorems for different versions of LC.
Un système de règles grammaticales est présenté pour analyser un fragment du français permettant l'expression de théorèmes et de preuves mathématiques. Pour cet objectif, on développe une version de la grammaire de Montague, avec des catégories syntaxiques relatives au contexte et aux domaines d'individus. Ce système peut être interprété dans la théorie constructive des types de Martin-Löf. Il est appliqué, d'abord, au français sans symboles mathématiques, avec une attention spéciale aux restrictions...
Un système de règles grammaticales est présenté pour analyser un fragment du français permettant l'expression de théorémes et de preuves mathématiques. Pour cet objectif, on développe une version de la grammaire de Montague, avec des catégories syntaxiques relatives au contexte et aux domaines d'individus. Ce système peut être interprété dans la théorie constructive des types de Martin-Löf. Il est appliqué, d'abord, au français sans symboles mathématiques, avec une attention spéciale aux restrictions...
In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their proofs are...
For a t-norm T on a bounded lattice , a partial order was recently defined and studied. In [11], it was pointed out that the binary relation is a partial order on , but may not be a lattice in general. In this paper, several sufficient conditions under which is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on such that is a lattice are presented.
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...
We introduce the sum of observables in fuzzy quantum spaces which generalize the Kolmogorov probability space using the ideas of fuzzy set theory.
Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...
Sela a annoncé une solution complète d’un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu’un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des groupes limites (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu’un groupe libre). Nous indiquerons quelques outils utilisés par Sela...
Il s'agit de présenter l'article de Schönfinkel «Über die Bausteine der mathematischen Logik», préparé pour la publication (1924) par H. Behmann, d'après une conférence de Schönfinkel en 1920, qui fonde ce que Curry nommera «la logique combinatoire». L'objectif principal du travail de Schönfinkel est l'élimination générale des variables (propositionnelles, prédicatives, individuelles), grâce à l'usage de plusieurs «fonctions particulières». On trouvera ici : (1) une introduction à l'article de Schönfinkel,...