Local analysis for semi-bounded groups
An o-minimal expansion ℳ = ⟨M,<,+,0, ...⟩ of an ordered group is called semi-bounded if it does not expand a real closed field. Possibly, it defines a real closed field with bounded domain I ⊆ M. Let us call a definable set short if it is in definable bijection with a definable subset of some Iⁿ, and long otherwise. Previous work by Edmundo and Peterzil provided structure theorems for definable sets with respect to the dichotomy ’bounded versus unbounded’. Peterzil (2009) conjectured a refined...