Completeness of cut-free type theories.
We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively Δ⁰₂ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable...
We use ideas and machinery of effective algebra to investigate computable structures on the space C[0,1] of continuous functions on the unit interval. We show that (C[0,1],sup) has infinitely many computable structures non-equivalent up to a computable isometry. We also investigate if the usual operations on C[0,1] are necessarily computable in every computable structure on C[0,1]. Among other results, we show that there is a computable structure on C[0,1] which computes + and the scalar multiplication,...
Si determinano alcune restrizioni sulle possibili cardinalità dei modelli di teorie in logiche soddisfacenti alcune proprietà di compattezza. Si dà una caratterizzazione delle logiche -compatte generate da quantificatori di cardinalità. Si stabilisce che il primo cardinale tale che una logica è -compatta è debolmente inaccessibile e soddisfa la proprietà dell'albero. Dai risultati enunciati appare un raffronto assai particolareggiato fra i due concetti di -compattezza e -compattezza.