On some noetherian rings of germs on a real closed field
Let R be a real closed field, and denote by the ring of germs, at the origin of Rⁿ, of functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring with some natural properties. We prove that, for each n ∈ ℕ, is a noetherian ring and if R = ℝ (the field of real numbers), then , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring .