Spielquantorinterpretationen unstetiger Funktionale der höheren Analysis.
In the paper D. Hoover, J. Keisler: Adapted probability distributions, Trans. Amer. Math. Soc. 286 (1984), 159–201 the notion of adapted distribution of two stochastic processes was introduced, which in a way represents the notion of equivalence of those processes. This very important property is hard to prove directly, so we continue the work of Keisler and Hoover in finding sufficient conditions for two stochastic processes to have the same adapted distribution. For this purpose we use the concept...
McAloon showed that if 𝓐 is a nonstandard model of IΔ₀, then some initial segment of 𝓐 is a nonstandard model of PA. Sommer and D'Aquino characterized, in terms of the Wainer functions, the elements that can belong to such an initial segment. The characterization used work of Ketonen and Solovay, and Paris. Here we give conditions on a model 𝓐 of IΔ₀ guaranteeing that there is an n-elementary initial segment that is a nonstandard model of PA. We also characterize the elements that can be included....
A group G is strongly bounded if every isometric action of G on a metric space has bounded orbits. We show that the automorphism groups of typical countable structures with the small index property are strongly bounded. In particular we show that this is the case when G is the automorphism group of the countable universal locally finite extension of a periodic abelian group.
We study connections between G-compactness and existence of strongly determined types.
It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent - the model used is iterated Sacks forcing - that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of set theory there are universally bad Darboux functions, Darboux functions whose sum with any nowhere...
A super real closed ring is a commutative ring equipped with the operation of all continuous functions ℝⁿ → ℝ. Examples are rings of continuous functions and super real fields attached to z-prime ideals in the sense of Dales and Woodin. We prove that super real closed rings which are fields are an elementary class of real closed fields which carry all o-minimal expansions of the real field in a natural way. The main part of the paper develops the commutative algebra of super real closed rings, by...
A De Morgan quasilattice is an algebra satisfying hyperidentities of the variety of De Morgan algebras (lattices). In this paper we give a functional representation of the free n-generated De Morgan quasilattice with two binary and one unary operations. Namely, we define the concept of super-De Morgan function and prove that the free De Morgan quasilattice with two binary and one unary operations on nfree generators is isomorphic to the De Morgan quasilattice of super-De Morgan functions of nvariables....
We continue the study of finitary abstract elementary classes beyond ℵ₀-stability. We suggest a possible notion of superstability for simple finitary AECs, and derive from this notion several good properties for independence. We also study constructible models and the behaviour of Galois types and weak Lascar strong types in this context. We show that superstability is implied by a-categoricity in a suitable cardinal. As an application we prove the following theorem: Assume that is a simple, tame,...