Displaying 81 – 100 of 135

Showing per page

On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic

Teresa Bigorajska, Henryk Kotlarski, James Schmerl (1998)

Fundamenta Mathematicae

We continue the earlier research of [1]. In particular, we work out a class of regular interstices and show that selective types are realized in regular interstices. We also show that, contrary to the situation above definable elements, the stabilizer of an element inside M(0) whose type is selective need not be maximal.

On semialgebraic points of definable sets

Artur Piękosz (1998)

Banach Center Publications

We prove that the semialgebraic, algebraic, and algebraic nonsingular points of a definable set in o-minimal structure with analytic cell decomposition are definable. Moreover, the operation of taking semialgebraic points is idempotent and the degree of complexity of semialgebraic points is bounded.

On Semi-Boolean-Like Algebras

Antonio Ledda, Francesco Paoli, Antonino Salibra (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra 𝐀 with constants 0 , 1 is Boolean-like in case for all a A the congruences θ a , 0 and θ a , 1 are complementary factor congruences of 𝐀 . We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation...

On sets with rank one in simple homogeneous structures

Ove Ahlman, Vera Koponen (2015)

Fundamenta Mathematicae

We study definable sets D of SU-rank 1 in e q , where ℳ is a countable homogeneous and simple structure in a language with finite relational vocabulary. Each such D can be seen as a ’canonically embedded structure’, which inherits all relations on D which are definable in e q , and has no other definable relations. Our results imply that if no relation symbol of the language of ℳ has arity higher than 2, then there is a close relationship between triviality of dependence and being a reduct of a binary...

On some constructions of algebraic objects

Miroslav Novotný (2006)

Czechoslovak Mathematical Journal

Mono-unary algebras may be used to construct homomorphisms, subalgebras, and direct products of algebras of an arbitrary type.

On some global semianalytic sets

Abdelhafed Elkhadiri (2013)

Annales de l’institut Fourier

We give some structures without quantifier elimination but in which the closure, and hence the interior and the boundary, of a quantifier free definable set is also a quantifier free definable set.

On some noetherian rings of C germs on a real closed field

Abdelhafed Elkhadiri (2011)

Annales Polonici Mathematici

Let R be a real closed field, and denote by R , n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R , n R , n with some natural properties. We prove that, for each n ∈ ℕ, R , n is a noetherian ring and if R = ℝ (the field of real numbers), then , n = , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R , n .

On special partial types and weak canonical bases in simple theories

Ziv Shami (2013)

Fundamenta Mathematicae

We define the notion of a weak canonical base for a partial type in a simple theory. We prove that members of a certain family of partial types, which we call special partial types, admit a weak canonical base; this family properly contains the family of amalgamation bases.

On the Boffa alternative

B. Bajorska, O. Macedońska (2001)

Colloquium Mathematicae

Let G* denote a nonprincipal ultrapower of a group G. In 1986 M.~Boffa posed a question equivalent to the following one: if G does not satisfy a positive law, does G* contain a free nonabelian subsemigroup? We give the affirmative answer to this question in the large class of groups containing all residually finite and all soluble groups, in fact, all groups considered in traditional textbooks on group theory.

Currently displaying 81 – 100 of 135