Almost direct products and saturation
The purpose of this article is to connect the notion of the amenability of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic reformulation of amenability constitutes a considerable weakening of the Følner criterion. As a by-product, it will be shown that in any non-amenable group G, there is a subset E of G such that no finitely additive probability measure on G measures all translates of E equally. The analysis of discrete groups will be generalized to the setting...
Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a condition.
In this paper we consider those Fraïssé classes which admit companion classes in the sense of [KPT]. We find a necessary and sufficient condition for the automorphism group of the Fraïssé limit to be amenable and apply it to prove the non-amenability of the automorphism groups of the directed graph S(3) and the boron tree structure T. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel-Kechris-Lyons [AKL]. By considering , where is the countably infinite-dimensional...
This paper has three parts. First, we study and characterize amenable and extremely amenable topological semigroups in terms of invariant measures using integral logic. We prove definability of some properties of a topological semigroup such as amenability and the fixed point on compacta property. Second, we define types and develop local stability in the framework of integral logic. For a stable formula ϕ, we prove definability of all complete ϕ-types over models and deduce from this the fundamental...
The ample hierarchy of geometries of stables theories is strict. We generalise the construction of the free pseudospace to higher dimensions and show that the n-dimensional free pseudospace is ω-stable n-ample yet not (n+1)-ample. In particular, the free pseudospace is not 3-ample. A thorough study of forking is conducted and an explicit description of canonical bases is given.
We define a recursive theory which axiomatizes a class of models of IΔ₀ + Ω ₃ + ¬ exp all of which share two features: firstly, the set of Δ₀ definable elements of the model is majorized by the set of elements definable by Δ₀ formulae of fixed complexity; secondly, Σ₁ truth about the model is recursively reducible to the set of true Σ₁ formulae of fixed complexity.
We show that for no infinite group the class of abelian-by- groups is elementary, but, at least when is an infinite elementary abelian -group (with prime), the class of groups admitting a normal abelian subgroup whose quotient group is elementarily equivalent to is elementary.
Some basic ideas of model theory are presented and a personal outlook on its perspectives is given.