Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces
(1) Shepherdson proved that a discrete unitary commutative semi-ring A+ satisfies IE0 (induction scheme restricted to quantifier free formulas) iff A is integral part of a real closed field; and Berarducci asked about extensions of this criterion when exponentiation is added to the language of rings. Let T range over axiom systems for ordered fields with exponentiation; for three values of T we provide a theory in the language of rings plus exponentiation such that the ...
A long-standing conjecture of Podewski states that every minimal field is algebraically closed. Known in positive characteristic, it remains wide open in characteristic zero. We reduce Podewski's conjecture to the (partially) ordered case, and we conjecture that such fields do not exist. We prove the conjecture in case the incomparability relation is transitive (the almost linear case). We also study minimal groups with a (partial) order, and give a complete classification of...
We discuss various conjectures and problems around the issue of when and whether stable formulas are responsible for forking in simple theories. We prove that if the simple theory T has strong stable forking then any complete type is a nonforking extension of a complete type which is axiomatized by instances of stable formulas. We also give another treatment of the first author's result which identifies canonical bases in supersimple theories.
A first order structure with universe M is atomic compact if every system of atomic formulas with parameters in M is satisfiable in provided each of its finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric) graphs. In particular, we investigate the extent to which “sparse” graphs (i.e. graphs with “few” vertices of “high” degree) are compact with respect to systems of atomic formulas with “few” unknowns, on the one hand, and are pure restrictions of their...
We establish the following model-theoretic characterization of the fragment IΔ₀ + Exp + BΣ₁ of Peano arithmetic in terms of fixed points of automorphisms of models of bounded arithmetic (the fragment IΔ₀ of Peano arithmetic with induction limited to Δ₀-formulae). Theorem A. The following two conditions are equivalent for a countable model of the language of arithmetic: (a) satisfies IΔ₀ + BΣ₁ + Exp; (b) for some nontrivial automorphism j of an end extension of that satisfies IΔ₀. Here is the...
In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time.
In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time.
We propose some new set-theoretic axioms which imply the generalized continuum hypothesis, and we discuss some of their consequences.
Concepts, definitions, notions, and some facts concerning the Banach-Mazur game are customized to a more general setting of partial orderings. It is applied in the theory of Fraïssé limits and beyond, obtaining simple proofs of universality of certain objects and classes.