A note on a Moore bound for graphs embedded in surfaces.
Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an edge-disjoint placement of two copies of G into Kₙ. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into Kₙ∖Cₙ.
Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3
We show that every 2-connected (2)-Halin graph is Hamiltonian.
The intersection dimension of a graph with respect to a class of graphs is the minimum such that is the intersection of some graphs on the vertex set belonging to . In this paper we follow [ Kratochv’ıl J., Tuza Z.: Intersection dimensions of graph classes, Graphs and Combinatorics 10 (1994), 159–168 ] and show that for some pairs of graph classes , the intersection dimension of graphs from with respect to is unbounded.
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.
Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.
In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of in a surface with Euler genus ε is ⎣n/(2ε+2)⎦ n - (ε+1)(1+⎣n/(2ε+2)⎦).