Über den kartographischen Vierfarbensatz. (Mit 23 Figuren im Text)
The type of a face f of a planar map is a sequence of degrees of vertices of f as they are encountered when traversing the boundary of f. A set 𝒯 of face types is found such that in any normal planar map there is a face with type from 𝒯. The set 𝒯 has four infinite series of types as, in a certain sense, the minimum possible number. An analogous result is applied to obtain new upper bounds for the cyclic chromatic number of 3-connected planar maps.
All maps of type (m,n) are covered by a universal map M(m,n) which lies on one of the three simply connected Riemann surfaces; in fact M(m,n) covers all maps of type (r,s) where r|m and s|n. In this paper we construct a tessellation M which is universal for all maps on all surfaces. We also consider the tessellation M(8,3) which covers all triangular maps. This coincides with the well-known Farey tessellation and we find many connections between M(8,3) and M.
Vertex colorings of the square of an outerplanar graph have received a lot of attention recently. In this article we prove that the chromatic number of the square of an outerplanar graph of maximum degree Δ = 6 is 7. The optimal upper bound for the chromatic number of the square of an outerplanar graph of maximum degree Δ ≠ 6 is known. Hence, this mentioned chromatic number of 7 is the last and only unknown upper bound of the chromatic number in terms of Δ.
Let be a finite lattice with a least element 0. is an annihilating-ideal graph of in which the vertex set is the set of all nontrivial ideals of , and two distinct vertices and are adjacent if and only if . We completely characterize all finite lattices whose line graph associated to an annihilating-ideal graph, denoted by , is a planar or projective graph.
Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is a forest with...