Displaying 21 – 40 of 45

Showing per page

Solutions de tournois : un spicilège

Jean-François Laslier (1996)

Mathématiques et Sciences Humaines

L'article passe en revue quelques Solutions de Tournois (correspondances de choix définies sur les tournois). On compare ces solutions entre elles, et on mentionne certaines de leurs propriétés.

Some properties complementary to Brualdi-Li matrices

Chuanlong Wang, Xuerong Yong (2015)

Czechoslovak Mathematical Journal

In this paper we derive new properties complementary to an 2 n × 2 n Brualdi-Li tournament matrix B 2 n . We show that B 2 n has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of B 2 n is also determined. Related results obtained in previous articles are proven to be corollaries.

Some Remarks On The Structure Of Strong K-Transitive Digraphs

César Hernández-Cruz, Juan José Montellano-Ballesteros (2014)

Discussiones Mathematicae Graph Theory

A digraph D is k-transitive if the existence of a directed path (v0, v1, . . . , vk), of length k implies that (v0, vk) ∈ A(D). Clearly, a 2-transitive digraph is a transitive digraph in the usual sense. Transitive digraphs have been characterized as compositions of complete digraphs on an acyclic transitive digraph. Also, strong 3 and 4-transitive digraphs have been characterized. In this work we analyze the structure of strong k-transitive digraphs having a cycle of length at least k. We show...

Some Results on 4-Transitive Digraphs

Patricio Ricardo García-Vázquez, César Hernández-Cruz (2017)

Discussiones Mathematicae Graph Theory

Let D be a digraph with set of vertices V and set of arcs A. We say that D is k-transitive if for every pair of vertices u, v ∈ V, the existence of a uv-path of length k in D implies that (u, v) ∈ A. A 2-transitive digraph is a transitive digraph in the usual sense. A subset N of V is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V N there exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and (k − 1)-absorbent...

Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel

Hortensia Galeana-Sánchez (2004)

Discussiones Mathematicae Graph Theory

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V(D)-N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel-perfect digraph. In this paper I investigate some sufficient conditions for a digraph to have a kernel by asking for the existence of certain diagonals or symmetrical arcs in each odd directed cycle whose length is at most 2α(D)+1, where α(D) is the maximum cardinality of an independent vertex set...

Stopping Markov processes and first path on graphs

Giacomo Aletti, Ely Merzbach (2006)

Journal of the European Mathematical Society

Given a strongly stationary Markov chain (discrete or continuous) and a finite set of stopping rules, we show a noncombinatorial method to compute the law of stopping. Several examples are presented. The problem of embedding a graph into a larger but minimal graph under some constraints is studied. Given a connected graph, we show a noncombinatorial manner to compute the law of a first given path among a set of stopping paths.We prove the existence of a minimal Markov chain without oversized information....

Strong asymmetric digraphs with prescribed interior and annulus

Steven J. Winters (2001)

Czechoslovak Mathematical Journal

The directed distance d ( u , v ) from u to v in a strong digraph D is the length of a shortest u - v path in D . The eccentricity e ( v ) of a vertex v in D is the directed distance from v to a vertex furthest from v in D . The center and periphery of a strong digraph are two well known subdigraphs induced by those vertices of minimum and maximum eccentricities, respectively. We introduce the interior and annulus of a digraph which are two induced subdigraphs involving the remaining vertices. Several results concerning...

Structure of cubic mapping graphs for the ring of Gaussian integers modulo n

Yangjiang Wei, Jizhu Nan, Gaohua Tang (2012)

Czechoslovak Mathematical Journal

Let n [ i ] be the ring of Gaussian integers modulo n . We construct for n [ i ] a cubic mapping graph Γ ( n ) whose vertex set is all the elements of n [ i ] and for which there is a directed edge from a n [ i ] to b n [ i ] if b = a 3 . This article investigates in detail the structure of Γ ( n ) . We give suffcient and necessary conditions for the existence of cycles with length t . The number of t -cycles in Γ 1 ( n ) is obtained and we also examine when a vertex lies on a t -cycle of Γ 2 ( n ) , where Γ 1 ( n ) is induced by all the units of n [ i ] while Γ 2 ( n ) is induced by all the...

Currently displaying 21 – 40 of 45