Displaying 601 – 620 of 669

Showing per page

The Turán Number of the Graph 2P5

Halina Bielak, Sebastian Kieliszek (2016)

Discussiones Mathematicae Graph Theory

We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

The Turàn number of the graph 3P4

Halina Bielak, Sebastian Kieliszek (2014)

Annales UMCS, Mathematica

Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

The Well-Covered Dimension Of Products Of Graphs

Isaac Birnbaum, Megan Kuneli, Robyn McDonald, Katherine Urabe, Oscar Vega (2014)

Discussiones Mathematicae Graph Theory

We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.

Total domination subdivision numbers of graphs

Teresa W. Haynes, Michael A. Henning, Lora S. Hopkins (2004)

Discussiones Mathematicae Graph Theory

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families...

Total edge-domatic number of a graph

Bohdan Zelinka (1991)

Mathematica Bohemica

The total edge-domatic number of a graph is introduced as an edge analogue of the total domatic number. Its values are studied for some special classes of graphs. The concept of totally edge-domatically full graph is introduced and investigated.

Tournois et ordres médians pour une opinion

B. Monjardet (1973)

Mathématiques et Sciences Humaines

Dans cet article on étudie les propriétés d’ordres totaux à distance minimum d’un ensemble de tournois ; on montre, par exemple, que ces ordres contiennent l’ordre d’unanimité. On étudie la fonction f ( n , v ) maximum de la distance entre un ordre total et v tournois définis sur un ensemble à n éléments ; on donne sa valeur exacte pour v pair, un encadrement pour v impair, et sa valeur limite pour v tendant vers l’infini.

Currently displaying 601 – 620 of 669