The sum of degrees in cliques.
We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.
Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)
We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families...
The total edge-domatic number of a graph is introduced as an edge analogue of the total domatic number. Its values are studied for some special classes of graphs. The concept of totally edge-domatically full graph is introduced and investigated.
Dans cet article on étudie les propriétés d’ordres totaux à distance minimum d’un ensemble de tournois ; on montre, par exemple, que ces ordres contiennent l’ordre d’unanimité. On étudie la fonction maximum de la distance entre un ordre total et tournois définis sur un ensemble à éléments ; on donne sa valeur exacte pour pair, un encadrement pour impair, et sa valeur limite pour tendant vers l’infini.