On the minimal length of the longest trail in a fixed edge-density graph
A nearly sharp lower bound on the length of the longest trail in a graph on n vertices and average degree k is given provided the graph is dense enough (k ≥ 12.5).
A nearly sharp lower bound on the length of the longest trail in a graph on n vertices and average degree k is given provided the graph is dense enough (k ≥ 12.5).
We compute explicitly the number of paths of given length joining two vertices of the Cayley graph of the free product of cyclic groups of order k.
A property P defined on all graphs of order n is said to be k-stable if for any graph of order n that does not satisfy P, the fact that uv is not an edge of G and that G + uv satisfies P implies . Every property is (2n-3)-stable and every k-stable property is (k+1)-stable. We denote by s(P) the smallest integer k such that P is k-stable and call it the stability of P. This number usually depends on n and is at most 2n-3. A graph of order n is said to be pancyclic if it contains cycles of all lengths...
Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.
A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. In this note, we prove that claw-free graphs with minimum degree at least 3 are not uniquely Hamiltonian. We also show that this is best possible by exhibiting uniquely Hamiltonian claw-free graphs with minimum degree 2 and arbitrary maximum degree. Finally, we show that a construction due to Entringer and Swart can be modified to construct triangle-free uniquely Hamiltonian graphs with minimum degree 3.
A k-ranking of a graph G is a colouring φ:V(G) → 1,...,k such that any path in G with endvertices x,y fulfilling φ(x) = φ(y) contains an internal vertex z with φ(z) > φ(x). On-line ranking number of a graph G is a minimum k such that G has a k-ranking constructed step by step if vertices of G are coming and coloured one by one in an arbitrary order; when colouring a vertex, only edges between already present vertices are known. Schiermeyer, Tuza and Voigt proved that for n ≥ 2. Here we show...
In the context of a conjecture of Erdős and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e., with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning the remaining case q = 2 (which corresponds to the conjecture of Erdős and Gyárfás), we show that there exist arbitrarily large cubic graphs whose all 2-power cycles have length 4 only, or 8 only.
In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph with , which implies that Zamfirescu’s conjecture is true.