Previous Page 26

Displaying 501 – 513 of 513

Showing per page

Vertex-dominating cycles in 2-connected bipartite graphs

Tomoki Yamashita (2007)

Discussiones Mathematicae Graph Theory

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.

γ-Cycles And Transitivity By Monochromatic Paths In Arc-Coloured Digraphs

Enrique Casas-Bautista, Hortensia Galeana-Sánchez, Rocío Rojas-Monroy (2013)

Discussiones Mathematicae Graph Theory

We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui ≠ uj if i ≠ j and for every i ∈ 0, 1, . . . , n there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices...

Currently displaying 501 – 513 of 513

Previous Page 26