A remark on signed posets and signed graphs
In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.
In this version of the Cops and Robber game, the cops move in tandems, or pairs, such that they are at distance at most one from each other after every move. The problem is to determine, for a given graph G, the minimum number of tandems sufficient to guarantee a win for the cops. We investigate this game on three graph products, the Cartesian, categorical and strong products.
A (finite) acyclic connected graph is called a tree. Let be a finite nonempty set, and let be the set of all trees with the property that is the vertex set of . We will find a one-to-one correspondence between and the set of all binary operations on which satisfy a certain set of three axioms (stated in this note).
For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that and is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R,...
We give some algebraic conditions for -tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
We find all connected graphs in which any two distinct vertices have exactly two common neighbors, thus solving a problem by B. Zelinka.
We say that a binary operation is associated with a (finite undirected) graph (without loops and multiple edges) if is defined on and if and only if , and for any , . In the paper it is proved that a connected graph is geodetic if and only if there exists a binary operation associated with which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper).
In this paper we propose a structural characterization for a class of bipartite graphs defined by two forbidden induced subgraphs. We show that the obtained characterization leads to polynomial-time algorithms for several problems that are NP-hard in general bipartite graphs.
The basis number of a graph G is defined to be the least integer d such that there is a basis B of the cycle space of G such that each edge of G is contained in at most d members of B. In this paper we give an upper bound of the basis number of the strong product of a graph with a bipartite graph and we show that this upper bound is the best possible.
We consider classes of graphs that enjoy the following properties: they are closed for gated subgraphs, gated amalgamation and Cartesian products, and for any gated subgraph the inverse of the gate function maps vertices to gated subsets. We prove that any graph of such a class contains a peripheral subgraph which is a Cartesian product of two graphs: a gated subgraph of the graph and a prime graph minus a vertex. Therefore, these graphs admit a peripheral elimination procedure which is a generalization...
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed...