Displaying 241 – 260 of 390

Showing per page

Computing the Metric Dimension of a Graph from Primary Subgraphs

Dorota Kuziak, Juan A. Rodríguez-Velázquez, Ismael G. Yero (2017)

Discussiones Mathematicae Graph Theory

Let G be a connected graph. Given an ordered set W = {w1, . . . , wk} ⊆ V (G) and a vertex u ∈ V (G), the representation of u with respect to W is the ordered k-tuple (d(u, w1), d(u, w2), . . . , d(u, wk)), where d(u, wi) denotes the distance between u and wi. The set W is a metric generator for G if every two different vertices of G have distinct representations. A minimum cardinality metric generator is called a metric basis of G and its cardinality is called the metric dimension of G. It is well...

Conditions for β-perfectness

Judith Keijsper, Meike Tewes (2002)

Discussiones Mathematicae Graph Theory

A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily). The main purpose of this paper is to give necessary and sufficient conditions, in terms of forbidden induced subgraphs,...

Connected domatic number in planar graphs

Bert L. Hartnell, Douglas F. Rall (2001)

Czechoslovak Mathematical Journal

A dominating set in a graph G is a connected dominating set of G if it induces a connected subgraph of G . The connected domatic number of G is the maximum number of pairwise disjoint, connected dominating sets in V ( G ) . We establish a sharp lower bound on the number of edges in a connected graph with a given order and given connected domatic number. We also show that a planar graph has connected domatic number at most 4 and give a characterization of planar graphs having connected domatic number 3.

Connected domination critical graphs with respect to relative complements

Xue-Gang Chen, Liang Sun (2006)

Czechoslovak Mathematical Journal

A dominating set in a graph G is a connected dominating set of G if it induces a connected subgraph of G . The minimum number of vertices in a connected dominating set of G is called the connected domination number of G , and is denoted by γ c ( G ) . Let G be a spanning subgraph of K s , s and let H be the complement of G relative to K s , s ; that is, K s , s = G H is a factorization of K s , s . The graph G is k - γ c -critical relative to K s , s if γ c ( G ) = k and γ c ( G + e ) < k for each edge e E ( H ) . First, we discuss some classes of graphs whether they are γ c -critical relative...

Connected global offensive k-alliances in graphs

Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number γ k , c ( G ) is the...

Connected odd dominating sets in graphs

Yair Caro, William F. Klostermeyer, Raphael Yuster (2005)

Discussiones Mathematicae Graph Theory

An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there...

Connected partition dimensions of graphs

Varaporn Saenpholphat, Ping Zhang (2002)

Discussiones Mathematicae Graph Theory

For a vertex v of a connected graph G and a subset S of V(G), the distance between v and S is d(v,S) = mind(v,x)|x ∈ S. For an ordered k-partition Π = S₁,S₂,...,Sₖ of V(G), the representation of v with respect to Π is the k-vector r(v|Π) = (d(v,S₁), d(v,S₂),..., d(v,Sₖ)). The k-partition Π is a resolving partition if the k-vectors r(v|Π), v ∈ V(G), are distinct. The minimum k for which there is a resolving k-partition of V(G) is the partition dimension pd(G) of G. A resolving partition Π = S₁,S₂,...,Sₖ...

Connected resolvability of graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Czechoslovak Mathematical Journal

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set for G containing a minimum number of vertices is a basis for G . The dimension dim ( G ) is the number of vertices in a basis for G . A resolving set W of G is connected if the subgraph...

Currently displaying 241 – 260 of 390