Displaying 261 – 280 of 390

Showing per page

Connected resolving decompositions in graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

For an ordered k -decomposition 𝒟 = { G 1 , G 2 , ... , G k } of a connected graph G and an edge e of G , the 𝒟 -code of e is the k -tuple c 𝒟 ( e ) = ( d ( e , G 1 ) , d ( e , G 2 ...

Connectivity of path graphs

Martin Knor, L'udovít Niepel (2000)

Discussiones Mathematicae Graph Theory

We prove a necessary and sufficient condition under which a connected graph has a connected P₃-path graph. Moreover, an analogous condition for connectivity of the Pₖ-path graph of a connected graph which does not contain a cycle of length smaller than k+1 is derived.

Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs

Sebastian M. Cioabă, Xiaofeng Gu (2016)

Czechoslovak Mathematical Journal

The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.

Constrained Colouring and σ-Hypergraphs

Yair Caro, Josef Lauri, Christina Zarb (2015)

Discussiones Mathematicae Graph Theory

A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings...

Constrained Steiner trees in Halin graphs

Guangting Chen, Rainer E. Burkard (2003)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

Constrained Steiner trees in Halin graphs

Guangting Chen, Rainer E. Burkard (2010)

RAIRO - Operations Research

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

Currently displaying 261 – 280 of 390