A note on set systems with no union of cardinality 0 modulo .
A graph , with a group of automorphisms of , is said to be -transitive, for some , if is transitive on -arcs but not on -arcs. Let be a connected -transitive graph of prime valency , and the vertex stabilizer of a vertex . Suppose that is solvable. Weiss (1974) proved that . In this paper, we prove that for some positive integers and such that and .
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product)...
In this note we give an upper bound for λ(n), the maximum number of edges in a strongly multiplicative graph of order n, which is sharper than the upper bound obtained by Beineke and Hegde [1].
Clique family inequalities a∑v∈W xv + (a - 1)∈v∈W, xv ≤ aδ form an intriguing class of valid inequalities for the stable set polytopes of all graphs. We prove firstly that their Chvátal-rank is at most a, which provides an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments. Secondly, we strengthen the upper bound further and discuss consequences regarding the Chvátal-rank of subclasses of claw-free graphs.
The cubical dimension of a graph is the smallest dimension of a hypercube into which is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with vertices, , is . The 2-rooted complete binary tree of depth is obtained from two copies of the complete binary tree of depth by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted...
If is a simple graph of size without isolated vertices and is its complement, we show that the domination numbers of and satisfy where is the minimum degree of vertices in .