Displaying 321 – 340 of 390

Showing per page

Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices

Claude Tardif (2022)

Commentationes Mathematicae Universitatis Carolinae

We prove that for any c 5 , there exists an infinite family ( G n ) n of graphs such that χ ( G n ) > c for all n and χ ( G m × G n ) c for all m n . These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with K c as a base is infinite for c 5 .

Counting Maximal Distance-Independent Sets in Grid Graphs

Reinhardt Euler, Paweł Oleksik, Zdzisław Skupień (2013)

Discussiones Mathematicae Graph Theory

Previous work on counting maximal independent sets for paths and certain 2-dimensional grids is extended in two directions: 3-dimensional grid graphs are included and, for some/any ℓ ∈ N, maximal distance-ℓ independent (or simply: maximal ℓ-independent) sets are counted for some grids. The transfer matrix method has been adapted and successfully applied

Currently displaying 321 – 340 of 390