Displaying 301 – 320 of 390

Showing per page

Convex domination in the composition and Cartesian product of graphs

Mhelmar A. Labendia, Sergio R. Jr. Canoy (2012)

Czechoslovak Mathematical Journal

In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition G [ H ] of two non-complete connected graphs G and H is equal to the clique domination number of G . The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the...

Convex independence and the structure of clone-free multipartite tournaments

Darren B. Parker, Randy F. Westhoff, Marty J. Wolf (2009)

Discussiones Mathematicae Graph Theory

We investigate the convex invariants associated with two-path convexity in clone-free multipartite tournaments. Specifically, we explore the relationship between the Helly number, Radon number and rank of such digraphs. The main result is a structural theorem that describes the arc relationships among certain vertices associated with vertices of a given convexly independent set. We use this to prove that the Helly number, Radon number, and rank coincide in any clone-free bipartite tournament. We...

Convex universal fixers

Magdalena Lemańska, Rita Zuazua (2012)

Discussiones Mathematicae Graph Theory

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G’ a copy of G. For a bijective function π: V(G) → V(G’), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G’) and E ( π G ) = E ( G ) E ( G ' ) M π , where M π = u π ( u ) | u V ( G ) . Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept of universal...

Cordial deficiency.

Riskin, Adrian (2007)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Cores and shells of graphs

Allan Bickle (2013)

Mathematica Bohemica

The k -core of a graph G , C k ( G ) , is the maximal induced subgraph H G such that δ ( G ) k , if it exists. For k > 0 , the k -shell of a graph G is the subgraph of G induced by the edges contained in the k -core and not contained in the ( k + 1 ) -core. The core number of a vertex is the largest value for k such that v C k ( G ) , and the maximum core number of a graph, C ^ ( G ) , is the maximum of the core numbers of the vertices of G . A graph G is k -monocore if C ^ ( G ) = δ ( G ) = k . This paper discusses some basic results on the structure of k -cores and k -shells....

Cotas inferiores para el QAP-árbol.

Enrique Benavent López (1985)

Trabajos de Estadística e Investigación Operativa

El QAP-Arbol es un caso especial del problema de asignación cuadrática en que los flujos distintos de cero forman un árbol. No se requiere ninguna condición para la matriz de distancias. En este artículo presentamos una formulación del QAP-Arbol como un problema de programación lineal entera. Basándonos en esta formulación hemos construido cuatro relajaciones lagrangianas distintas que nos permiten obtener una serie de cotas inferiores para este problema. Para resolver una de estas relajaciones,...

Countable 1-transitive coloured linear orderings II

G. Campero-Arena, J. K. Truss (2004)

Fundamenta Mathematicae

This paper gives a structure theorem for the class of countable 1-transitive coloured linear orderings for a countably infinite colour set, concluding the work begun in [1]. There we gave a complete classification of these orders for finite colour sets, of which there are ℵ₁. For infinite colour sets, the details are considerably more complicated, but many features from [1] occur here too, in more marked form, principally the use (now essential it seems) of coding trees, as a means of describing...

Countable splitting graphs

Nick Haverkamp (2011)

Fundamenta Mathematicae

A graph is called splitting if there is a 0-1 labelling of its vertices such that for every infinite set C of natural numbers there is a sequence of labels along a 1-way infinite path in the graph whose restriction to C is not eventually constant. We characterize the countable splitting graphs as those containing a subgraph of one of three simple types.

Counterexample to a conjecture on the structure of bipartite partitionable graphs

Richard G. Gibson, Christina M. Mynhardt (2007)

Discussiones Mathematicae Graph Theory

A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that V ( G ) - N [ D i ] = D j , i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned...

Currently displaying 301 – 320 of 390