Displaying 341 – 360 of 399

Showing per page

Structures ofW(2.2) Lie conformal algebra

Lamei Yuan, Henan Wu (2016)

Open Mathematics

The purpose of this paper is to study W(2, 2) Lie conformal algebra, which has a free ℂ[∂]-basis L, M such that [...] [LλL]=(∂+2λ)L,[LλM]=(∂+2λ)M,[MλM]=0 . In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.

Subarborians

Bohdan Zelinka (1980)

Czechoslovak Mathematical Journal

Subgraph densities in hypergraphs

Yuejian Peng (2007)

Discussiones Mathematicae Graph Theory

Let r ≥ 2 be an integer. A real number α ∈ [0,1) is a jump for r if for any ε > 0 and any integer m ≥ r, any r-uniform graph with n > n₀(ε,m) vertices and density at least α+ε contains a subgraph with m vertices and density at least α+c, where c = c(α) > 0 does not depend on ε and m. A result of Erdös, Stone and Simonovits implies that every α ∈ [0,1) is a jump for r = 2. Erdös asked whether the same is true for r ≥ 3. Frankl and Rödl gave a negative answer by showing an infinite sequence...

Sublattices of certain Coxeter lattices

Anne-Marie Bergé, Jacques Martinet (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper, we describe the sublattices of some lattices, extending previous results of [Ber]. Our description makes intensive use of graphs.

Subsemi-Eulerian graphs.

Suffel, Charles, Tindell, Ralph, Hoffman, Cynthia, Mandell, Manachem (1982)

International Journal of Mathematics and Mathematical Sciences

Sum labellings of cycle hypergraphs

Hanns-Martin Teichert (2000)

Discussiones Mathematicae Graph Theory

A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 < d̲ ≤ [d̅] such that is isomorphic to the hypergraph d ̲ , [ d ̅ ] ( S ) = ( V , ) where V = S and = e S : d ̲ | e | [ d ̅ ] v e v S . For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y , . . . , y σ V such that y , . . . , y σ is a sum hypergraph. Generalizing the graph Cₙ we obtain d-uniform hypergraphs where any d consecutive vertices of Cₙ form an edge. We determine sum numbers and investigate properties of sum labellings for this...

Sum List Edge Colorings of Graphs

Arnfried Kemnitz, Massimiliano Marangio, Margit Voigt (2016)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f) over all edge...

Currently displaying 341 – 360 of 399