Largest minimal percolating sets in hypercubes under 2-bootstrap percolation.
A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ) formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.
We consider general properties of lattices of relative colour-families and antivarieties. Several results generalise the corresponding assertions about colour-families of undirected loopless graphs, see [1]. Conditions are indicated under which relative colour-families form a lattice. We prove that such a lattice is distributive. In the class of lattices of antivarieties of relation structures of finite signature, we distinguish the most complicated (universal) objects. Meet decompositions in lattices...
Au début des années 60, Claude Berge a proposé deux conjectures sur les graphes parfaits. La première a été démontrée par Laci Lovász en 1972. La deuxième, dite conjecture forte des graphes parfaits, a fait couler beaucoup d’encre dans les 30 années qui ont suivi. Ce n’est qu’en 2002 qu’elle a été démontrée dans un article très impressionnant de 179 pages par Maria Chudnovsky, Neil Robertson, Paul Seymour et Robin Thomas. L’exposé présentera cette conjecture célèbre et donnera une idée de sa démonstration....
On considère un graphe complet dont les arêtes sont totalement préordonnées. En analyse de similitude, plutôt que de procéder à un ordonnancement des arêtes ex oequo par une méthode lexicographique sur leurs intitulés, l'auteur propose de rechercher la réunion des arbres maximaux (RAM).
To study the block structure of a connected graph G = (V,E), we introduce two algebraic approaches that reflect this structure: a binary operation + called a leap operation and a ternary relation L called a leap system, both on a finite, nonempty set V. These algebraic structures are easily studied by considering their underlying graphs, which turn out to be block graphs. Conversely, we define the operation as well as the set of leaps of the connected graph G. The underlying graph of , as well...