Displaying 481 – 500 of 5365

Showing per page

A weighted graph polynomial from chromatic invariants of knots

Steven D. Noble, Dominic J. A. Welsh (1999)

Annales de l'institut Fourier

Motivated by the work of Chmutov, Duzhin and Lando on Vassiliev invariants, we define a polynomial on weighted graphs which contains as specialisations the weighted chromatic invariants but also contains many other classical invariants including the Tutte and matching polynomials. It also gives the symmetric function generalisation of the chromatic polynomial introduced by Stanley. We study its complexity and prove hardness results for very restricted classes of graphs.

A σ₃ type condition for heavy cycles in weighted graphs

Shenggui Zhang, Xueliang Li, Hajo Broersma (2001)

Discussiones Mathematicae Graph Theory

A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree d w ( v ) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. w(xz) = w(yz) for every...

About uniquely colorable mixed hypertrees

Angela Niculitsa, Vitaly Voloshin (2000)

Discussiones Mathematicae Graph Theory

A mixed hypergraph is a triple 𝓗 = (X,𝓒,𝓓) where X is the vertex set and each of 𝓒, 𝓓 is a family of subsets of X, the 𝓒-edges and 𝓓-edges, respectively. A k-coloring of 𝓗 is a mapping c: X → [k] such that each 𝓒-edge has two vertices with the same color and each 𝓓-edge has two vertices with distinct colors. 𝓗 = (X,𝓒,𝓓) is called a mixed hypertree if there exists a tree T = (X,𝓔) such that every 𝓓-edge and every 𝓒-edge induces a subtree of T. A mixed hypergraph 𝓗 is called uniquely...

Achromatic number of K 5 × K n for small n

Mirko Horňák, Štefan Pčola (2003)

Czechoslovak Mathematical Journal

The achromatic number of a graph G is the maximum number of colours in a proper vertex colouring of G such that for any two distinct colours there is an edge of G incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of K 5 and K n for all n 24 .

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...

Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree

Anna Fiedorowicz (2013)

Discussiones Mathematicae Graph Theory

A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have...

Acyclic numbers of graphs.

Samodivkin, Vladmir (2009)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Acyclic reducible bounds for outerplanar graphs

Mieczysław Borowiecki, Anna Fiedorowicz, Mariusz Hałuszczak (2009)

Discussiones Mathematicae Graph Theory

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G [ V i ] i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that u V i and v V j is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R,...

Currently displaying 481 – 500 of 5365