Displaying 481 – 500 of 908

Showing per page

On some non-obvious connections between graphs and unary partial algebras

Konrad Pióro (2000)

Czechoslovak Mathematical Journal

In the present paper we generalize a few algebraic concepts to graphs. Applying this graph language we solve some problems on subalgebra lattices of unary partial algebras. In this paper three such problems are solved, other will be solved in papers [Pió I], [Pió II], [Pió III], [Pió IV]. More precisely, in the present paper first another proof of the following algebraic result from [Bar1] is given: for two unary partial algebras 𝐀 and 𝐁 , their weak subalgebra lattices are isomorphic if and only...

On some properties of the Laplacian matrix revealed by the RCM algorithm

Francisco Pedroche, Miguel Rebollo, Carlos Carrascosa, Alberto Palomares (2016)

Czechoslovak Mathematical Journal

In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a...

On some variations of extremal graph problems

Gabriel Semanišin (1997)

Discussiones Mathematicae Graph Theory

A set P of graphs is termed hereditary property if and only if it contains all subgraphs of any graph G belonging to P. A graph is said to be maximal with respect to a hereditary property P (shortly P-maximal) whenever it belongs to P and none of its proper supergraphs of the same order has the property P. A graph is P-extremal if it has a the maximum number of edges among all P-maximal graphs of given order. The number of its edges is denoted by ex(n, P). If the number of edges of a P-maximal...

On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs

Chandrashekar Adiga, B.R. Rakshith (2016)

Discussiones Mathematicae Graph Theory

Let G and H be two graphs. The join G ∨ H is the graph obtained by joining every vertex of G with every vertex of H. The corona G ○ H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The neighborhood corona G★H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The edge corona G ◇ H is the graph obtained...

On splitting infinite-fold covers

Márton Elekes, Tamás Mátrai, Lajos Soukup (2011)

Fundamenta Mathematicae

Let X be a set, κ be a cardinal number and let ℋ be a family of subsets of X which covers each x ∈ X at least κ-fold. What assumptions can ensure that ℋ can be decomposed into κ many disjoint subcovers? We examine this problem under various assumptions on the set X and on the cover ℋ: among other situations, we consider covers of topological spaces by closed sets, interval covers of linearly ordered sets and covers of ℝⁿ by polyhedra and by arbitrary convex sets. We focus on...

Currently displaying 481 – 500 of 908