Almost all trees have an even number of independent sets.
It is known that self-complementary 3-uniform hypergraphs on n vertices exist if and only if n is congruent to 0, 1 or 2 modulo 4. In this paper we define an almost self-complementary 3-uniform hypergraph on n vertices and prove that it exists if and only if n is congruent to 3 modulo 4. The structure of corresponding complementing permutation is also analyzed. Further, we prove that there does not exist a regular almost self-complementary 3-uniform hypergraph on n vertices where n is congruent...
Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color the edges...
An edge-ordering of a graph G=(V, E) is a one-to-one mapping f:E(G)→{1, 2, ..., |E(G)|}. A path of length k in G is called a (k, f)-ascent if f increases along the successive edges forming the path. The altitude α(G) of G is the greatest integer k such that for all edge-orderings f, G has a (k, f)-ascent. In our paper we give exact values of α(G) for all helms and wheels. Furthermore, we use our result to obtain altitude for graphs that are subgraphs of helms.
We show that the theorems of Moore and Myhill hold for cellular automata whose universes are Cayley graphs of amenable finitely generated groups. This extends the analogous result of A. Machi and F. Mignosi “Garden of Eden configurations for cellular automata on Cayley graphs of groups” for groups of sub-exponential growth.
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...
We say that a binary operation is associated with a (finite undirected) graph (without loops and multiple edges) if is defined on and if and only if , and for any , . In the paper it is proved that a connected graph is geodetic if and only if there exists a binary operation associated with which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper).