Displaying 521 – 540 of 561

Showing per page

Trees with unique minimum total dominating sets

Teresa W. Haynes, Michael A. Henning (2002)

Discussiones Mathematicae Graph Theory

A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.

Triangle Decompositions of Planar Graphs

Christina M. Mynhardt, Christopher M. van Bommel (2016)

Discussiones Mathematicae Graph Theory

A multigraph G is triangle decomposable if its edge set can be partitioned into subsets, each of which induces a triangle of G, and rationally triangle decomposable if its triangles can be assigned rational weights such that for each edge e of G, the sum of the weights of the triangles that contain e equals 1. We present a necessary and sufficient condition for a planar multigraph to be triangle decomposable. We also show that if a simple planar graph is rationally triangle decomposable, then it...

T-Rickart modules

S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari (2012)

Colloquium Mathematicae

We introduce the notions of T-Rickart and strongly T-Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also, every free R-module is T-Rickart if and only if R = Z ( R R ) R ' , where R’ is a hereditary right R-module. Examples illustrating the results are presented.

Tricyclic graphs with exactly two main eigenvalues

Xiaoxia Fan, Yanfeng Luo, Xing Gao (2013)

Open Mathematics

An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.

Tridiagonal matrices and spectral properties of some graph classes

Milica Andelić, Zhibin Du, Carlos M. da Fonseca, Slobodan K. Simić (2020)

Czechoslovak Mathematical Journal

A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. In this paper we give an explicit formula for the characteristic polynomial of any chain graph and we show that it can be expressed using the determinant of a particular tridiagonal matrix. Then this fact is applied to show that in a certain interval a chain graph does not have any nonzero eigenvalue. A similar result is provided for threshold graphs....

T-theory.

Dress, Andreas, Moulton, Vincent, Terhalle, Werner (1995)

Séminaire Lotharingien de Combinatoire [electronic only]

Turán number of two vertex-disjoint copies of cliques

Caiyun Hu (2024)

Czechoslovak Mathematical Journal

The Turán number of a given graph H , denoted by ex ( n , H ) , is the maximum number of edges in an H -free graph on n vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number ex ( n , K p K q ) of a vertex-disjoint union of cliques K p and K q for all values of n .

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Currently displaying 521 – 540 of 561