Displaying 741 – 760 of 908

Showing per page

On the rainbow connection of Cartesian products and their subgraphs

Sandi Klavžar, Gašper Mekiš (2012)

Discussiones Mathematicae Graph Theory

Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rainbow connection number as small as possible compared to the rainbow connection of the hypercube are constructed....

On the Rainbow Vertex-Connection

Xueliang Li, Yongtang Shi (2013)

Discussiones Mathematicae Graph Theory

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertexconnected. It was proved that if G is a graph of order n with minimum degree δ, then rvc(G) < 11n/δ. In this paper, we show that rvc(G) ≤ 3n/(δ+1)+5 for [xxx] and n ≥ 290, while rvc(G) ≤ 4n/(δ + 1) + 5...

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

Fatemeh Alinaghipour Taklimi, Shaun Fallat, Karen Meagher (2014)

Special Matrices

The zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block-cycle graph the zero forcing number equals...

On the rooted Tutte polynomial

F. Y. Wu, C. King, W. T. Lu (1999)

Annales de l'institut Fourier

The Tutte polynomial is a generalization of the chromatic polynomial of graph colorings. Here we present an extension called the rooted Tutte polynomial, which is defined on a graph where one or more vertices are colored with prescribed colors. We establish a number of results pertaining to the rooted Tutte polynomial, including a duality relation in the case that all roots reside around a single face of a planar graph.

On the second Laplacian spectral moment of a graph

Ying Liu, Yu Qin Sun (2010)

Czechoslovak Mathematical Journal

Kragujevac (M. L. Kragujevac: On the Laplacian energy of a graph, Czech. Math. J. 56(131) (2006), 1207–1213) gave the definition of Laplacian energy of a graph G and proved L E ( G ) 6 n - 8 ; equality holds if and only if G = P n . In this paper we consider the relation between the Laplacian energy and the chromatic number of a graph G and give an upper bound for the Laplacian energy on a connected graph.

On the second largest eigenvalue of a mixed graph

Jun Zhou, Yi-Zheng Fan, Yi Wang (2007)

Discussiones Mathematicae Graph Theory

Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).

Currently displaying 741 – 760 of 908