The search session has expired. Please query the service again.

Displaying 721 – 740 of 908

Showing per page

On the number of representations of an element in a polygonal Cayley graph

Gabriella Kuhn, Paolo M. Soardi (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We compute explicitly the number of paths of given length joining two vertices of the Cayley graph of the free product of cyclic groups of order k.

On the number of Russell’s socks or 2 + 2 + 2 + = ?

Horst Herrlich, Eleftherios Tachtsis (2006)

Commentationes Mathematicae Universitatis Carolinae

The following question is analyzed under the assumption that the Axiom of Choice fails badly: Given a countable number of pairs of socks, then how many socks are there? Surprisingly this number is not uniquely determined by the above information, thus giving rise to the concept of Russell-cardinals. It will be shown that: • some Russell-cardinals are even, but others fail to be so; • no Russell-cardinal is odd; • no Russell-cardinal is comparable with any cardinal of the form α or 2 α ; • finite sums...

On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs

Yilun Shang (2016)

Open Mathematics

As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition,...

On the Numbers of Cut-Vertices and End-Blocks in 4-Regular Graphs

Dingguo Wang, Erfang Shan (2014)

Discussiones Mathematicae Graph Theory

A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.

On the order of certain close to regular graphs without a matching of given size

Sabine Klinkenberg, Lutz Volkmann (2007)

Czechoslovak Mathematical Journal

A graph G is a { d , d + k } -graph, if one vertex has degree d + k and the remaining vertices of G have degree d . In the special case of k = 0 , the graph G is d -regular. Let k , p 0 and d , n 1 be integers such that n and p are of the same parity. If G is a connected { d , d + k } -graph of order n without a matching M of size 2 | M | = n - p , then we show in this paper the following: If d = 2 , then k 2 ( p + 2 ) and (i) n k + p + 6 . If d 3 is odd and t an integer with 1 t p + 2 , then (ii) n d + k + 1 for k d ( p + 2 ) , (iii) n d ( p + 3 ) + 2 t + 1 for d ( p + 2 - t ) + t k d ( p + 3 - t ) + t - 3 , (iv) n d ( p + 3 ) + 2 p + 7 for k p . If d 4 is even, then (v) n d + k + 2 - η for k d ( p + 3 ) + p + 4 + η , (vi) n d + k + p + 2 - 2 t = d ( p + 4 ) + p + 6 for k = d ( p + 3 ) + 4 + 2 t and p 1 , (vii) n d + k + p + 4 for...

On the packing of two copies of a caterpillar in its third power

Christian Germain, Hamamache Kheddouci (2003)

Discussiones Mathematicae Graph Theory

H. Kheddouci, J.F. Saclé and M. Woźniak conjectured in 2000 that if a tree T is not a star, then there is an edge-disjoint placement of T into its third power.In this paper, we prove the conjecture for caterpillars.

On the parallel complexity of the alternating Hamiltonian cycle problem

E. Bampis, Y. Manoussakis, I. Milis (2010)

RAIRO - Operations Research

Given a graph with colored edges, a Hamiltonian cycle is called alternating if its successive edges differ in color. The problem of finding such a cycle, even for 2-edge-colored graphs, is trivially NP-complete, while it is known to be polynomial for 2-edge-colored complete graphs. In this paper we study the parallel complexity of finding such a cycle, if any, in 2-edge-colored complete graphs. We give a new characterization for such a graph admitting an alternating Hamiltonian cycle which allows...

On the p-domination number of cactus graphs

Mostafa Blidia, Mustapha Chellali, Lutz Volkmann (2005)

Discussiones Mathematicae Graph Theory

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.

Currently displaying 721 – 740 of 908