Displaying 801 – 820 of 908

Showing per page

On the tree structure of the power digraphs modulo n

Amplify Sawkmie, Madan Mohan Singh (2015)

Czechoslovak Mathematical Journal

For any two positive integers n and k 2 , let G ( n , k ) be a digraph whose set of vertices is { 0 , 1 , ... , n - 1 } and such that there is a directed edge from a vertex a to a vertex b if a k b ( mod n ) . Let n = i = 1 r p i e i be the prime factorization of n . Let P be the set of all primes dividing n and let P 1 , P 2 P be such that P 1 P 2 = P and P 1 P 2 = . A fundamental constituent of G ( n , k ) , denoted by G P 2 * ( n , k ) , is a subdigraph of G ( n , k ) induced on the set of vertices which are multiples of p i P 2 p i and are relatively prime to all primes q P 1 . L. Somer and M. Křížek proved that the trees attached to all cycle...

On the uniqueness of d-vertex magic constant

S. Arumugam, N. Kamatchi, G.R. Vijayakumar (2014)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give...

On the unitary Cayley graph of a finite ring.

Akhtar, Reza, Boggess, Megan, Jackson-Henderson, Tiffany, Jiménez, Isidora, Karpman, Rachel, Kinzel, Amanda, Pritikin, Dan (2009)

The Electronic Journal of Combinatorics [electronic only]

On the Vertex Folkman Numbers Fv(2,...,2;q)

Nenov, Nedyalko (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 05C55.In this paper we shall compute the Folkman numbers ... We prove also new bounds for some vertex and edge Folkman numbers.

On the Vertex Separation of Cactus Graphs

Markov, Minko (2007)

Serdica Journal of Computing

This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.

On the Vertex Separation of Maximal Outerplanar Graphs

Markov, Minko (2008)

Serdica Journal of Computing

We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

Oleg V. Borodin, Anna O. Ivanova (2016)

Discussiones Mathematicae Graph Theory

The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.

On theH-Force Number of Hamiltonian Graphs and Cycle Extendability

Erhard Hexel (2017)

Discussiones Mathematicae Graph Theory

The H-force number h(G) of a hamiltonian graph G is the smallest cardinality of a set A ⊆ V (G) such that each cycle containing all vertices of A is hamiltonian. In this paper a lower and an upper bound of h(G) is given. Such graphs, for which h(G) assumes the lower bound are characterized by a cycle extendability property. The H-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula.

On total restrained domination in graphs

De-xiang Ma, Xue-Gang Chen, Liang Sun (2005)

Czechoslovak Mathematical Journal

In this paper we initiate the study of total restrained domination in graphs. Let G = ( V , E ) be a graph. A total restrained dominating set is a set S V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S , and every vertex in S is adjacent to another vertex in S . The total restrained domination number of G , denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G . First, some exact values and sharp bounds for γ r t ( G ) are given in Section 2. Then the Nordhaus-Gaddum-type...

On total vertex irregularity strength of graphs

K. Muthu Guru Packiam, Kumarappan Kathiresan (2012)

Discussiones Mathematicae Graph Theory

Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.

Currently displaying 801 – 820 of 908