Decomposition of complete bipartite graphs into factors with given diameters
We give necessary and sufficient conditions for the decomposition of complete bipartite multigraph Km,n(λ) into paths and cycles having k edges. In particular, we show that such decomposition exists in Km,n(λ), when λ ≡ 0 (mod 2), [...] and k(p + q) = 2mn for k ≡ 0 (mod 2) and also when λ ≥ 3, λm ≡ λn ≡ 0(mod 2), k(p + q) =λ_mn, m, n ≥ k, (resp., m, n ≥ 3k/2) for k ≡ 0(mod 4) (respectively, for k ≡ 2(mod 4)). In fact, the necessary conditions given above are also sufficient when λ = 2.
R. Frucht and J. Gallian (1988) proved that bipartite prisms of order have an -labeling, thus they decompose the complete graph for any positive integer . We use a technique called the -labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order called generalized prisms decompose the complete graph for any positive integer .
We analyze a minimum number of vertices of a complete graph that can be decomposed into one factor of diameter 2 and k factors of diameter at most 3. We find exact values for k ≤ 4 and the asymptotic value of the ratio of this number and k when k tends to infinity. We also find the asymptotic value of the ratio of the number of vertices of the smallest complete graph that can be decomposed into p factors of diameter 2 and k factors of diameter 3 and number k when p is fixed.
Let k be a positive integer, Sk and Ck denote, respectively, a star and a cycle of k edges. λKn is the usual notation for the complete multigraph on n vertices and in which every edge is taken λ times. In this paper, we investigate necessary and sufficient conditions for the existence of the decomposition of λKn into edges disjoint of stars Sk’s and cycles Ck’s.
In this note, we consider the problem of existence of an edge-decomposition of a multigraph into isomorphic copies of 2-edge paths . We find necessary and sufficient conditions for such a decomposition of a multigraph H to exist when (i) either H does not have incident multiple edges or (ii) multiplicities of the edges in H are not greater than two. In particular, we answer a problem stated by Z. Skupień.
Let G = (V,A) be a directed graph. With any subset X of V is associated the directed subgraph G[X] = (X,A ∩ (X×X)) of G induced by X. A subset X of V is an interval of G provided that for a,b ∈ X and x ∈ V∖X, (a,x) ∈ A if and only if (b,x) ∈ A, and similarly for (x,a) and (x,b). For example ∅, V, and {x}, where x ∈ V, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V,A) is called...
It is proved that a connected multigraph G which is the union of two edge-disjoint paths has another decomposition into two paths with the same set, U, of endvertices provided that the multigraph is neither a path nor cycle. Moreover, then the number of such decompositions is proved to be even unless the number is three, which occurs exactly if G is a tree homeomorphic with graph of either symbol + or ⊥. A multigraph on n vertices with exactly two traceable pairs is constructed for each n ≥ 3. The...
For n ≥ 4, the complete n-vertex multidigraph with arc multiplicity λ is proved to have a decomposition into directed paths of arbitrarily prescribed lengths ≤ n - 1 and different from n - 2, unless n = 5, λ = 1, and all lengths are to be n - 1 = 4. For λ = 1, a more general decomposition exists; namely, up to five paths of length n - 2 can also be prescribed.
Given a family ℱ of multigraphs without isolated vertices, a multigraph M is called ℱ-decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of ℱ. We present necessary and sufficient conditions for existence of such decompositions if ℱ consists of all multigraphs of size q except for one. Namely, for a multigraph H of size q we find each multigraph M of size kq, such that every partition of the edge set of M into parts of cardinality q contains a part...