Displaying 141 – 160 of 561

Showing per page

The fan graph is determined by its signless Laplacian spectrum

Muhuo Liu, Yuan Yuan, Kinkar Chandra Das (2020)

Czechoslovak Mathematical Journal

Given a graph G , if there is no nonisomorphic graph H such that G and H have the same signless Laplacian spectra, then we say that G is Q -DS. In this paper we show that every fan graph F n is Q -DS, where F n = K 1 P n - 1 and n 3 .

The Fan-Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks

Piotr Formanowicz, Krzysztof Tanaś (2012)

International Journal of Applied Mathematics and Computer Science

It was conjectured by Fan and Raspaud (1994) that every bridgeless cubic graph contains three perfect matchings such that every edge belongs to at most two of them. We show a randomized algorithmic way of finding Fan-Raspaud colorings of a given cubic graph and, analyzing the computer results, we try to find and describe the Fan-Raspaud colorings for some selected classes of cubic graphs. The presented algorithms can then be applied to the pair assignment problem in cubic computer networks. Another...

The Farey graph.

Jones, Gareth A. (1987)

Séminaire Lotharingien de Combinatoire [electronic only]

The first Dirichlet eigenvalue of bicyclic graphs

Guang-Jun Zhang, Xiao-Dong Zhang (2012)

Czechoslovak Mathematical Journal

In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed k interior vertices of degree...

The flower conjecture in special classes of graphs

Zdeněk Ryjáček, Ingo Schiermeyer (1995)

Discussiones Mathematicae Graph Theory

We say that a spanning eulerian subgraph F ⊂ G is a flower in a graph G if there is a vertex u ∈ V(G) (called the center of F) such that all vertices of G except u are of the degree exactly 2 in F. A graph G has the flower property if every vertex of G is a center of a flower. Kaneko conjectured that G has the flower property if and only if G is hamiltonian. In the present paper we prove this conjecture in several special classes of graphs, among others in squares and in a certain...

The forcing convexity number of a graph

Gary Chartrand, Ping Zhang (2001)

Czechoslovak Mathematical Journal

For two vertices u and v of a connected graph G , the set I ( u , v ) consists of all those vertices lying on a u v geodesic in G . For a set S of vertices of G , the union of all sets I ( u , v ) for u , v S is denoted by I ( S ) . A set S is a convex set if I ( S ) = S . The convexity number c o n ( G ) of G is the maximum cardinality of a proper convex set of G . A convex set S in G with | S | = c o n ( G ) is called a maximum convex set. A subset T of a maximum convex set S of a connected graph G is called a forcing subset for S if S is the unique maximum convex set...

The forcing dimension of a graph

Gary Chartrand, Ping Zhang (2001)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the (metric) representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ), where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations. A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is its (metric) dimension dim ( G ) . For a basis W of G , a subset S of W is called a forcing subset of W if W is...

The forcing geodetic number of a graph

Gary Chartrand, Ping Zhang (1999)

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic...

The forcing steiner number of a graph

A.P. Santhakumaran, J. John (2011)

Discussiones Mathematicae Graph Theory

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The...

The Friendship Theorem

Karol Pąk (2012)

Formalized Mathematics

In this article we prove the friendship theorem according to the article [1], which states that if a group of people has the property that any pair of persons have exactly one common friend, then there is a universal friend, i.e. a person who is a friend of every other person in the group

The fundamental constituents of iteration digraphs of finite commutative rings

Jizhu Nan, Yangjiang Wei, Gaohua Tang (2014)

Czechoslovak Mathematical Journal

For a finite commutative ring R and a positive integer k 2 , we construct an iteration digraph G ( R , k ) whose vertex set is R and for which there is a directed edge from a R to b R if b = a k . Let R = R 1 ... R s , where s > 1 and R i is a finite commutative local ring for i { 1 , ... , s } . Let N be a subset of { R 1 , , R s } (it is possible that N is the empty set ). We define the fundamental constituents G N * ( R , k ) of G ( R , k ) induced by the vertices which are of the form { ( a 1 , , a s ) R : a i D ( R i ) if R i N , otherwise a i U ( R i ) , i = 1 , ... , s } , where U ( R ) denotes the unit group of R and D ( R ) denotes the zero-divisor set of R . We investigate...

The fundamental group of a locally finite graph with ends-a hyperfinite approach

Isaac Goldbring, Alessandro Sisto (2016)

Fundamenta Mathematicae

The end compactification |Γ| of a locally finite graph Γis the union of the graph and its ends, endowed with a suitable topology. We show that π₁(|Γ|) embeds into a nonstandard free group with hyperfinitely many generators, i.e. an ultraproduct of finitely generated free groups, and that the embedding we construct factors through an embedding into an inverse limit of free groups. We also show how to recover the standard description of π₁(|Γ|) given by Diestel and Sprüssel (2011). Finally, we give...

Currently displaying 141 – 160 of 561